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Preface

In your hands you’re holding the C++ book that I wish I would have had
many years ago. Not as one of my first books, no, but as an advanced book,
after I had already digested the language mechanics and was able to think
beyond the C++ syntax. Yes, this book would have definitely helped me
better understand the fundamental aspects of maintainable software, and
I’m confident that it will help you too.

Why I Wrote This Book
By the time I was really digging into the language (that was a few years
after the first C++ standard had been released), I had read pretty much
every C++ book there was. But despite the fact that many of these books
were great and definitely paved the way for my current career as a C++
trainer and consultant, they were too focused on the little details and the
implementation specifics, and too far away from the bigger picture of
maintainable software.

At the time, very few books truly focused on the bigger picture, dealing
with the development of large software systems. Among these were John
Lakos’s Large Scale C++ Software Design,  a great but literally heavy
introduction to dependency management, and the so-called Gang of Four
book, which is the classic book on software design patterns.  Unfortunately,
over the years, this situation hasn’t really changed: most books, talks, blogs,
etc., primarily focus on language mechanics and features—the small details
and specifics. Very few, and in my opinion way too few, new releases focus
on maintainable software, changeability, extensibility, and testability. And if
they try to, they unfortunately quickly fall back into the common habit of
explaining language mechanics and demonstrating features.

This is why I’ve written this book. A book that does not, in contrast to most
others, spend time on the mechanics or the many features of the language,

1

2



but primarily focuses on changeability, extensibility, and testability of
software in general. A book that does not pretend that the use of new C++
standards or features will make the difference between good or bad
software, but instead clearly shows that it is the management of
dependencies that is decisive, that the dependencies in our code decide
between it being good or bad. As such, it is a rare kind of book in the world
of C++ indeed, as it focuses on the bigger picture: software design.



What This Book Is About

Software Design
From my point of view, good software design is the essence of every
successful software project. Yet still, despite its fundamental role, there is
so little literature on the topic, and very little advice on what to do and how
to do things right. Why? Well, because it’s difficult. Very difficult. Probably
the most difficult facet of writing software that we have to face. And that’s
because there is no single “right” solution, no “golden” advice to pass on
through the generations of software developers. It always depends.

Despite this limitation, I will give advice on how to design good, high-
quality software. I will provide design principles, design guidelines, and
design patterns that will help you to better understand how to manage
dependencies and turn your software into something you can work with for
decades. As stated before, there is no “golden” advice, and this book
doesn’t hold any ultimate or perfect solution. Instead, I try to show the most
fundamental aspects of good software, the most important details, the
diversity and the pros and the cons of different designs. I will also formulate
intrinsic design goals and demonstrate how to achieve these goals with
Modern C++.

Modern C++
For more than a decade, we’ve been celebrating the advent of Modern C++,
applauding the many new features and extensions of the language, and by
doing so, creating the impression that Modern C++ will help us solve all
software-related problems. Not so in this book. This book does not pretend
that throwing a few smart pointers at the code will make the code “Modern”
or automatically yield good design. Also, this book won’t show Modern
C++ as an assortment of new features. Instead, it will show how the
philosophy of the language has evolved and the way we implement C++
solutions today.



But of course, we will also see code. Lots of it. And of course this book will
make use of the features of newer C++ standards (including C++20).
However, it will also make an effort to emphasize that the design is
independent of the implementation details and the used features. New
features don’t change the rules about what is good design or bad design;
they merely change the way we implement good design. They make it
easier to implement good design. So this book shows and discusses
implementation details, but (hopefully) doesn’t get lost in them and always
remains focused on the big picture: software design and design patterns.

Design Patterns
As soon as you start mentioning design patterns, you inadvertently conjure
up the expectation of object-oriented programming and inheritance
hierarchies. Yes, this book will show the object-oriented origin of many
design patterns. However, it will put a strong emphasis on the fact that there
isn’t just one way to make good use of a design pattern. I will demonstrate
how the implementation of design patterns has evolved and diversified,
making use of many different paradigms, including object-oriented
programming, generic programming, and functional programming. This
book acknowledges the reality that there is no one true paradigm and does
not pretend that there is only one single approach, one ever-working
solution for all problems. Instead it tries to show Modern C++ for what it
truly is: the opportunity to combine all paradigms, weave them into a strong
and durable net, and create software design that will last through the
decades.

I hope this book proves to be the missing piece in C++ literature. I hope it
helps you as much as it would have helped me. I hope that it holds some
answers you have been looking for and provides you with a couple of key
insights that you were missing. And I also hope that this book keeps you
somewhat entertained and motivated to read everything. Most importantly,
however, I hope that this book will show you the importance of software
design and the role that design patterns play. Because, as you will see,
design patterns are everywhere!



Who This Book Is For
This book is of value to every C++ developer. In particular, it is for every
C++ developer interested in understanding the usual problems of
maintainable software and learning about common solutions to these
problems (and I assume that is indeed every C++ developer). However, this
book is not a C++ beginner’s book. In fact, most of the guidelines in this
book require some experience with software development in general and
C++ in particular. For instance, I assume that you have a firm grasp of the
language mechanics of inheritance hierarchies and some experience with
templates. Then I can reach for the corresponding features whenever
necessary and appropriate. Once in a while, I will even reach for some
C++20 features (in particular C++20 concepts). However, as the focus is on
software design, I will rarely dwell on explaining a particular feature, so if a
feature is unknown to you, please consult your favorite C++ language
reference. Only occasionally will I add some reminders, mostly about
common C++ idioms (such as the Rule of 5).

https://oreil.ly/fzS3f


How This Book Is Structured
This book is organized into chapters, each containing several guidelines.
Each guideline focuses on one key aspect of maintainable software or one
particular design pattern. Hence, the guidelines represent the major
takeaways, the aspects that I hope bring the most value to you. They’re
written such that you can read all of them from front to back, but since
they’re only loosely coupled, they enable you to also start with the
guideline that attracts your attention. Still, they’re not independent.
Therefore, each guideline contains the necessary cross-references to other
guidelines to show you that everything is connected.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by
values determined by context.



TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for
download at https://github.com/igl42/cpp_software_design.

If you have a technical question or a problem using the code examples,
please send email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require
permission. Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation
does require permission.

We appreciate, but generally do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For example: “C++
Software Design by Klaus Iglberger (O’Reilly). Copyright 2022 Klaus
Iglberger, 978-1-098-11316-2.”

If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at permissions@oreilly.com.

https://github.com/igl42/cpp_software_design
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com


O’Reilly Online Learning

NOTE
For more than 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform.
O’Reilly’s online learning platform gives you on-demand access to live
training courses, in-depth learning paths, interactive coding environments,
and a vast collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at https://oreil.ly/c-plus-
plus.

http://oreilly.com/
http://oreilly.com/
https://oreil.ly/c-plus-plus


Email bookquestions@oreilly.com to comment or ask technical questions
about this book.

For news and information about our books and courses, visit
http://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Follow us on Twitter: http://twitter.com/oreillymedia.

Watch us on YouTube: http://youtube.com/oreillymedia.
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Chapter 1. The Art of Software
Design

What is software design? And why should you care about it? In this chapter,
I will set the stage for this book on software design. I will explain software
design in general, help you understand why it is vitally important for the
success of a project, and why it is the one thing you should get right. But
you will also see that software design is complicated. Very complicated. In
fact, it is the most complicated part of software development. Therefore, I
will also explain several software design principles that will help you to
stay on the right path.

In “Guideline 1: Understand the Importance of Software Design”, I will
focus on the big picture and explain that software is expected to change.
Consequently, software should be able to cope with change. However, that
is much easier said than done, since in reality, coupling and dependencies
make our life as a developer so much harder. That problem is addressed by
software design. I will introduce software design as the art of managing
dependencies and abstractions—an essential part of software engineering.

In “Guideline 2: Design for Change”, I will explicitly address coupling and
dependencies and help you understand how to design for change and how to
make software more adaptable. For that purpose, I will introduce both the
Single-Responsibility Principle (SRP) and the Don’t Repeat Yourself (DRY)
principle, which help you to achieve this goal.

In “Guideline 3: Separate Interfaces to Avoid Artificial Coupling”, I will
expand the discussion about coupling and specifically address coupling via
interfaces. I will also introduce the Interface Segregation Principle (ISP) as
a means to reduce artificial coupling induced by interfaces.

In “Guideline 4: Design for Testability”, I will focus on testability issues
that arise as a result of artificial coupling. In particular, I will raise the



question of how to test a private member function and demonstrate that the
one true solution is a consequent application of separation of concerns.

In “Guideline 5: Design for Extension”, I will address an important kind of
change: extensions. Just as code should be easy to change, it should also be
easy to extend. I will give you an idea how to achieve that goal, and I will
demonstrate the value of the Open-Closed Principle (OCP).

Guideline 1: Understand the Importance of
Software Design
If I were to ask you which code properties are most important to you, you
would, after some thinking, probably say things like readability, testability,
maintainability, extensibility, reusability, and scalability. And I would
completely agree. But now, if I were to ask you how to achieve these goals,
there is a good chance that you would start to list some C++ features: RAII,
algorithms, lambdas, modules, and so on.

Features Are Not Software Design
Yes, C++ offers a lot of features. A lot! Approximately half of the almost
2,000 pages of the printed C++ standard are devoted to explaining language
mechanics and features.  And since the release of C++11, there is the
explicit promise that there will be more: every three years, the C++
standardization committee blesses us with a new C++ standard that ships
with additional, brand-new features. Knowing that, it doesn’t come as a big
surprise that in the C++ community there’s a very strong emphasis on
features and language mechanics. Most books, talks, and blogs are focused
on features, new libraries, and language details.

It almost feels as if features are the most important thing about
programming in C++, and crucial for the success of a C++ project. But
honestly, they are not. Neither the knowledge about all the features nor the
choice of the C++ standard is responsible for the success of a project. No,
you should not expect features to save your project. On the contrary: a
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project can be very successful even if it uses an older C++ standard, and
even if only a subset of the available features are used. Leaving aside the
human aspects of software development, much more important for the
question about success or failure of a project is the overall structure of the
software. It is the structure that is ultimately responsible for maintainability:
how easy is it to change code, extend code, and test code? Without the
ability to easily change code, add new functionality, and have confidence in
its correctness due to tests, a project is at the end of its lifecycle. The
structure is also responsible for the scalability of a project: how large can
the project grow before it collapses under its own weight? How many
people can work on realizing the vision of the project before they step on
one another’s toes?

The overall structure is the design of a project. The design plays a much
more central role in the success of a project than any feature could ever do.
Good software is not primarily about the proper use of any feature; rather, it
is about solid architecture and design. Good software design can tolerate
some bad implementation decisions, but bad software design cannot be
saved by the heroic use of features (old or new) alone.

Software Design: The Art of Managing Dependencies
and Abstractions
Why is software design so important for the quality of a project? Well,
assuming everything works perfectly right now, as long as nothing changes
in your software and as long as nothing needs to be added, you are fine.
However, that state will likely not last for long. It’s reasonable to expect
that something will change. After all, the one constant in software
development is change. Change is the driving force behind all our problems
(and also most of our solutions). That’s why software is called software:
because in comparison to hardware, it is soft and malleable. Yes, software is
expected to be easily adapted to the ever-changing requirements. But as you
may know, in reality this expectation might not always be true.

To illustrate this point, let’s imagine that you select an issue from your issue
tracking system that the team has rated with an expected effort of 2.



Whatever a 2 means in your own project(s), it most certainly does not
sound like a big task, so you are confident that this will be done quickly. In
good faith, you first take some time to understand what is expected, and
then you start by making a change in some entity A. Because of immediate
feedback from your tests (you are lucky to have tests!), you are quickly
reminded that you also have to address the issue in entity B. That is
surprising! You did not expect that B was involved at all. Still, you go ahead
and adapt B anyway. However, again unexpectedly, the nightly build reveals
that this causes C and D to stop working. Before continuing, you now
investigate the issue a little deeper and find that the roots of the issue are
spread through a large portion of the codebase. The small, initially
innocent-looking task has evolved into a large, potentially risky code
modification.  Your confidence in resolving the issue quickly is gone. And
your plans for the rest of the week are as well.

Maybe this story sounds familiar to you. Maybe you can even contribute a
few war stories of your own. Indeed, most developers have similar
experiences. And most of these experiences have the same source of
trouble. Usually the problem can be reduced to a single word:
dependencies. As Kent Beck has expressed in his book on test-driven
development:

Dependency is the key problem in software development at all scales.

Dependencies are the bane of every software developer’s existence. “But of
course there are dependencies,” you argue. “There will always be
dependencies. How else should different pieces of code work together?”
And of course, you are correct. Different pieces of code need to work
together, and this interaction will always create some form of coupling.
However, while there are necessary, unavoidable dependencies, there are
also artificial dependencies that we accidentally introduce because we lack
an understanding of the underlying problem, don’t have a clear idea of the
bigger picture, or just don’t pay enough attention. Needless to say, these
artificial dependencies hurt. They make it harder to understand our
software, change software, add new features, and write tests. Therefore, one
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of the primary tasks, if not the primary task, of a software developer is to
keep artificial dependencies at a minimum.

This minimization of dependencies is the goal of software architecture and
design. To state it in the words of Robert C. Martin:

The goal of software architecture is to minimize the human resources
required to build and maintain the required system.

Architecture and design are the tools needed to minimize the work effort in
any project. They deal with dependencies and reduce the complexity via
abstractions. In my own words:

Software design is the art of managing interdependencies between
software components. It aims at minimizing artificial (technical)
dependencies and introduces the necessary abstractions and
compromises.

Yes, software design is an art. It’s not a science, and it doesn’t come with a
set of easy and clear answers.  Too often the big picture of design eludes us,
and we are overwhelmed by the complex interdependencies of software
entities. But we are trying to deal with this complexity and reduce it by
introducing the right kind of abstractions. This way, we keep the level of
detail at a reasonable level. However, too often individual developers on the
team may have a different idea of the architecture and the design. We might
not be able to implement our own vision of a design and be forced to make
compromises in order to move forward.

TIP
The term abstraction is used in different contexts. It’s used for the organization of
functionality and data items into data types and functions. But it’s also used to describe
the modeling of common behavior and the representation of a set of requirements and
expectations. In this book on software design, I will primarily use the term for the latter
(see in particular Chapter 2).
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Note that the words architecture and design can be interchanged in the
preceding quotes, since they’re very similar and share the same goals. Yet
they aren’t the same. The similarities, but also differences, become clear if
you take a look at the three levels of software development.

The Three Levels of Software Development
Software Architecture and Software Design are just two of the three levels
of software development. They are complemented by the level of
Implementation Details. Figure 1-1 gives an overview of these three levels.

To give you a feeling for these three levels, let’s start with a real-world
example of the relationship among architecture, design, and implementation
details. Consider yourself to be in the role of an architect. And no, please
don’t picture yourself in a comfy chair in front of a computer with a hot
coffee next to you, but picture yourself outside at a construction site. Yes,
I’m talking about an architect for buildings.  As such an architect, you
would be in charge of all the important properties of a house: its integration
into the neighborhood, its structural integrity, the arrangement of rooms,
plumbing, etc. You would also take care of a pleasing appearance and
functional qualities—perhaps a large living room, easy access between the
kitchen and the dining room, and so on. In other words, you would be
taking care of the overall architecture, the things that would be hard to
change later, but you would also deal with the smaller design aspects
concerning the building. However, it’s hard to tell the difference between
the two: the boundary between architecture and design appears to be fluid
and is not clearly separated.
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Figure 1-1. The three levels of software development: Software Architecture, Software Design, and
Implementation Details. Idioms can be design or implementation patterns.

These decisions would be the end of your responsibility, however. As an
architect, you wouldn’t worry about where to place the refrigerator, the TV,
or other furniture. You wouldn’t deal with all the nifty details about where
to place pictures and other pieces of decoration. In other words, you
wouldn’t handle the details; you would just make sure that the homeowner
has the necessary structure to live well.



The furniture and other “nifty details” in this metaphor correspond to the
lowest and most concrete level of software development, the
implementation details. This level handles how a solution is implemented.
You choose the necessary (and available) C++ standard or any subset of it,
as well as the appropriate features, keywords, and language specifics to use,
and deal with aspects such as memory acquisition, exception safety,
performance, etc. This is also the level of implementation patterns, such as
std::make_unique() as a factory function, std::enable_if as a
recurring solution to explicitly benefit from SFINAE, etc.

In software design, you start to focus on the big picture. Questions about
maintainability, changeability, extensibility, testability, and scalability are
more pronounced on this level. Software design primarily deals with the
interaction of software entities, which in the previous metaphor are
represented by the arrangement of rooms, doors, pipes, and cables. At this
level, you handle the physical and logical dependencies of components
(classes, function, etc.).  It’s the level of design patterns such as Visitor,
Strategy, and Decorator that define a dependency structure among software
entities, as explained in Chapter 3. These patterns, which usually are
transferable from language to language, help you break down complex
things into digestible pieces.

Software Architecture is the fuzziest of the three levels, the hardest to put
into words. This is because there is no common, universally accepted
definition of software architecture. While there may be many different
views on what exactly an architecture is, there is one aspect that everyone
seems to agree on: architecture usually entails the big decisions, the aspects
of your software that are among the hardest things to change in the future:

Architecture is the decisions that you wish you could get right early in a
project, but that you are not necessarily more likely to get them right than
any other.

—Ralph Johnson

In Software Architecture, you use architectural patterns such as client-
server architecture, microservices, and so on.  These patterns also deal
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with the question of how to design systems, where you can change one part
without affecting any other parts of your software. Similar to Software
design patterns, they define and address the structure and interdependencies
among software entities. In contrast to design patterns, though, they usually
deal with the key players, the big entities of your software (e.g., modules
and components instead of classes and functions).

From this perspective, Software Architecture represents the overall strategy
of your software approach, whereas Software Design is the tactics to make
the strategy work. The problem with this picture is that there is no
definition of “big.” Especially with the advent of microservices, it becomes
more and more difficult to draw a clear line between small and big
entities.

Thus, architecture is often described as what expert developers in a project
perceive as the key decisions.

What makes the separation between architecture, design, and details a little
more difficult is the concept of an idiom. An idiom is a commonly used but
language-specific solution for a recurring problem. As such, an idiom also
represents a pattern, but it could be either an implementation pattern or a
design pattern.  More loosely speaking, C++ idioms are the best practices
of the C++ community for either design or implementation. In C++, most
idioms fall into the category of implementation details. For instance, there
is the copy-and-swap idiom that you may know from the implementation of
a copy assignment operator, and the RAII idiom (Resource Acquisition Is
Initialization—you should definitely be familiar with this; if not, please see
your second-favorite C++ book ). None of these idioms introduce an
abstraction, and none of them help to decouple. Still, they are indispensable
to implement good C++ code.

I hear you ask, “Could you be a little more specific, please? Isn’t RAII also
providing some form of decoupling? Doesn’t it decouple resource
management from business logic?” You’re correct: RAII separates resource
management and business logic. However, it doesn’t achieve this by means
of decoupling, i.e., abstraction, but by means of encapsulation. Both
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abstraction and encapsulation help you make complex systems easier to
understand and change, but while abstraction solves the problems and
issues that arise at the Software Design level, encapsulation solves the
problems and issues that arise at the Implementation Details level. To quote
Wikipedia:

The advantages of RAII as a resource management technique are that it
provides encapsulation, exception safety […], and locality […].
Encapsulation is provided because resource management logic is defined
once in the class, not at each call site.

While most idioms fall into the category of Implementation Details, there
are also idioms that fall into the category of Software Design. Two
examples are the Non-Virtual Interface (NVI) idiom and the Pimpl idiom.
These two idioms are based on two classic design patterns: the Template
Method design pattern and the Bridge design pattern, respectively.  They
introduce an abstraction and help decouple and design for change and
extensions.

The Focus on Features
If software architecture and software design are of such importance, then
why are we in the C++ community focusing so strongly on features? Why
do we create the illusion that C++ standards, language mechanics, and
features are decisive for a project? I think there are three strong reasons for
that. First, because there are so many features, with sometimes complex
details, we need to spend a lot of time talking about how to use all of them
properly. We need to create a common understanding on which use is good
and which use is bad. We as a community need to develop a sense of
idiomatic C++.

The second reason is that we might put the wrong expectations on features.
As an example, let’s consider C++20 modules. Without going into details,
this feature may indeed be considered the biggest technical revolution since
the beginning of C++. Modules may at last put the questionable and
cumbersome practice of including header files into source files to an end.
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Due to this potential, the expectations for that feature are enormous. Some
people even expect modules to save their project by fixing their structural
issues. Unfortunately, modules will have a hard time satisfying these
expectations: modules don’t improve the structure or design of your code
but can merely represent the current structure and design. Modules don’t
repair your design issues, but they may be able to make the flaws visible.
Thus, modules simply cannot save your project. So indeed, we may be
putting too many or the wrong expectations on features.

And last, but not least, the third reason is that despite the huge amount of
features and their complexity, in comparison to the complexity of software
design, the complexity of C++ features is small. It’s much easier to explain
a given set of rules for features, regardless of how many special cases they
contain, than it is to explain the best way to decouple software entities.

While there is usually a good answer to all feature-related questions, the
common answer in software design is “It depends.” That answer might not
even be evidence of inexperience, but of the realization that the best way to
make code more maintainable, changeable, extensible, testable, and
scalable heavily depends on many project-specific factors. The decoupling
of the complex interplay between many entities may indeed be one of the
most challenging endeavors that mankind has ever faced:

Design and programming are human activities; forget that and all is
lost.

To me, a combination of these three reasons is why we focus on features so
much. But please, don’t get me wrong. That’s not to say that features are
not important. On the contrary, features are important. And yes, it’s
necessary to talk about features and learn how to use them correctly, but
once again, they alone do not save your project.

The Focus on Software Design and Design Principles
While features are important, and while it is of course good to talk about
them, software design is more important. Software design is essential. I
would even argue that it’s the foundation of the success of our projects.
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Therefore, in this book I will make the attempt to truly focus on software
design and design principles instead of features. Of course I will still show
good and up-to-date C++ code, but I won’t force the use of the latest and
greatest language additions.  I will make use of some new features when it
is reasonable and beneficial, such as C++20 concepts, but I will not pay
attention to noexcept, or use constexpr everywhere.  Instead I will try to
tackle the difficult aspects of software. I will, for the most part, focus on
software design, the rationale behind design decisions, design principles,
managing dependencies, and dealing with abstractions.

In summary, software design is the critical part of writing software.
Software developers should have a good understanding of software design
to write good, maintainable software. Because after all, good software is
low-cost, and bad software is expensive.

GUIDELINE 1: UNDERSTAND THE IMPORTANCE OF
SOFTWARE DESIGN

Treat software design as an essential part of writing software.

Focus less on C++ language details and more on software design.

Avoid unnecessary coupling and dependencies to make software
more adaptable to frequent changes.

Understand software design as the art of managing dependencies
and abstractions.

Consider the boundary between software design and software
architecture as fluid.

Guideline 2: Design for Change
One of the essential expectations for good software is its ability to change
easily. This expectation is even part of the word software. Software, in
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contrast to hardware, is expected to be able to adapt easily to changing
requirements (see also “Guideline 1: Understand the Importance of
Software Design”). However, from your own experience you may be able to
tell that often it is not easy to change code. On the contrary, sometimes a
seemingly simple change turns out to be a week-long endeavor.

Separation of Concerns
One of the best and proven solutions to reduce artificial dependencies and
simplify change is to separate concerns. The core of the idea is to split,
segregate, or extract pieces of functionality:

Systems that are broken up into small, well-named, understandable
pieces enable faster work.

The intent behind separation of concerns is to better understand and manage
complexity and thus design more modular software. This idea is probably as
old as software itself and hence has been given many different names. For
instance, the same idea is called orthogonality by the Pragmatic
Programmers.  They advise separating orthogonal aspects of software.
Tom DeMarco calls it cohesion:

Cohesion is a measure of the strength of association of the elements
inside a module. A highly cohesive module is a collection of statements
and data items that should be treated as a whole because they are so
closely related. Any attempt to divide them up would only result in
increased coupling and decreased readability.

In the SOLID principles,  one of the most established sets of design
principles, the idea is known as the Single-Responsibility Principle (SRP):

A class should have only one reason to change.

Although the concept is old and is commonly known under many names,
many attempts to explain separation of concerns raise more questions than
answers. This is particularly true for the SRP. The name of this design
principle alone raises questions: what is a responsibility? And what is a
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single responsibility? A common attempt to clarify the vagueness about
SRP is the following:

Everything should do just one thing.

Unfortunately this explanation is hard to outdo in terms of vagueness. Just
as the word responsibility doesn’t carry a lot of meaning, just one thing
doesn’t help to shed any more light on it.

Irrespective of the name, the idea is always the same: group only those
things that truly belong together, and separate everything that does not
strictly belong. Or in other words: separate those things that change for
different reasons. By doing this, you reduce artificial coupling between
different aspects of your code and it helps you make your software more
adaptable to change. In the best case, you can change a particular aspect of
your software in exactly one place.

An Example of Artificial Coupling
Let’s shed some light on separation of concerns by means of a code
example. And I do have a great example indeed: I present to you the
abstract Document class:

 
//#include <some_json_library.h>  // Potential physical dependency 
 
class Document 
{ 
 public: 
   // ... 
   virtual ~Document() = default; 
 
   virtual void exportToJSON( /*...*/ ) const = 0;   
   virtual void serialize( ByteStream&, /*...*/ ) const = 0;   
   // ... 
}; 

This sounds like a very useful base class for all kinds of documents, doesn’t
it? First, there is the exportToJSON() function ( ). All deriving classes will
have to implement the exportToJSON() function in order to produce a



JSON file from the document. That will prove to be pretty useful: without
having to know about a particular kind of document (and we can imagine
that we will eventually have PDF documents, Word documents, and many
more), we can always export in JSON format. Nice! Second, there is a
serialize() function ( ). This function lets you transform a Document
into bytes via a ByteStream. You can store these bytes in some persistent
system, like a file or a database. And of course we can expect that there are
many other, useful functions available that will allow us to pretty much use
this document for everything.

However, I can see the frown on your face. No, you don’t look particularly
convinced that this is good software design. It may be because you’re just
very suspicious about this example (it simply looks too good to be true). Or
it may be that you’ve learned the hard way that this kind of design
eventually leads to trouble. You may have experienced that using the
common object-oriented design principle to bundle the data and the
functions that operate on them may easily lead to unfortunate coupling. And
I agree: despite the fact that this base class looks like a great all-in-one
package, and even looks like it has everything that we might ever need, this
design will soon lead to trouble.

This is bad design because it contains many dependencies. Of course there
are the obvious, direct dependencies, as for instance the dependency on the
ByteStream class. However, this design also favors the introduction of
artificial dependencies, which will make subsequent changes harder. In this
case, there are three kinds of artificial dependencies. Two of these are
introduced by the exportToJSON() function, and one by the serialize()
function.

First, exportToJSON() needs to be implemented in the derived classes.
And yes, there is no choice, because it is a pure virtual function (denoted by
the sequence = 0, the so-called pure specifier). Since derived classes will
very likely not want to carry the burden of implementing JSON exports
manually, they will rely on an external, third-party JSON library: json,
rapidjson, or simdjson. Whatever library you choose for that purpose,
because of the exportToJSON() member function, deriving documents
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would suddenly depend on this library. And, very likely, all deriving classes
would depend on the same library, for consistency reasons alone. Thus, the
deriving classes are not really independent; they are artificially coupled to a
particular design decision.  Also, the dependency on a specific JSON
library would definitely limit the reusability of the hierarchy, because it
would no longer be lightweight. And switching to another library would
cause a major change because all deriving classes would have to be
adapted.

Of course, the same kind of artificial dependency is introduced by the
serialize() function. It’s likely that serialize() will also be
implemented in terms of a third-party library, such as protobuf or
Boost.serialization. This considerably worsens the dependency situation
because it introduces a coupling between two orthogonal, unrelated design
aspects (i.e., JSON export and serialization). A change to one aspect might
result in changes to the other aspect.

In the worst case, the exportToJSON() function might introduce a second
dependency. The arguments expected in the exportToJSON() call might
accidentally reflect some of the implementation details of the chosen JSON
library. In that case, eventually switching to another library might result in a
change of the signature of the exportToJSON() function, which would
subsequently cause changes in all callers. Thus, the dependency on the
chosen JSON library might accidentally be far more widespread than
intended.

The third kind of dependency is introduced by the serialize() function.
Due to this function, the classes deriving from Document depend on global
decisions on how documents are serialized. What format do we use? Do we
use little endian or big endian? Do we have to add the information that the
bytes represent a PDF file or a Word file? If yes (and I assume that is very
likely), how do we represent such a document? By means of an integral
value? For instance, we could use an enumeration for this purpose:

enum class DocumentType 
{ 
   pdf, 
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   word, 
   // ... Potentially many more document types 
};

This approach is very common for serialization. However, if this low-level
document representation is used within the implementations of the
Document classes, we would accidentally couple all the different kinds of
documents. Every deriving class would implicitly know about all the other
Document types. As a result, adding a new kind of document would directly
affect all existing document types. That would be a serious design flaw,
since, again, it will make change harder.

Unfortunately, the Document class promotes many different kinds of
coupling. So no, the Document class is not a great example of good class
design, since it isn’t easy to change. On the contrary, it is hard to change
and thus a great example of a violation of the SRP: the classes deriving
from Document and users of the Document class change for many reasons
because we have created a strong coupling between several orthogonal,
unrelated aspects. To summarize, deriving classes and users of documents
may change for any of the following reasons:

The implementation details of the exportToJSON() function change
because of a direct dependency on the used JSON library

The signature of the exportToJSON() function changes because the
underlying implementation changes

The Document class and the serialize() function change because of
a direct dependency on the ByteStream class

The implementation details of the serialize() function change
because of a direct dependency on the implementation details

All types of documents change because of the direct dependency on
the DocumentType enumeration

Obviously, this design promotes more changes, and every single change
would be harder. And of course, in the general case, there is the danger that



additional orthogonal aspects are artificially coupled inside documents,
which would further increase the complexity of making a change. In
addition, some of these changes are definitely not restricted to a single place
in the codebase. In particular, changes to the implementation details of
exportToJSON() and serialize() would not be restricted to only one
class, but likely all kinds of documents (PDF, Word, and so on). Therefore,
a change would affect a significant number of places all over the codebase,
which poses a maintenance risk.

Logical Versus Physical Coupling
The coupling isn’t limited to logical coupling but also extends to physical
coupling. Figure 1-2 illustrates that coupling. Let’s assume that there is a
User class on the low level of our architecture that needs to use documents
that reside on a higher level of the architecture. Of course the User class
depends directly on the Document class, which is a necessary dependency—
an intrinsic dependency of the given problem. Thus, it should not be a
concern for us. However, the (potential) physical dependency of Document
on the selected JSON library and the direct dependency on the ByteStream
class cause an indirect, transitive dependency of User to the JSON library
and ByteStream, which reside on the highest level of our architecture. In
the worst case, this means that changes to the JSON library or the
ByteStream class have an effect on User. Hopefully it’s easy to see that
this is an artificial, not an intentional, dependency: a User shouldn’t have to
depend on JSON or serialization.



NOTE
I should explicitly state that there is a potential physical dependency of Document on the
select JSON library. If the <Document.h> header file includes any header from the
JSON library of choice (as indicated in the code snippet at the beginning of “An
Example of Artificial Coupling”), for instance because the exportToJSON() function
expects some arguments based on that library, then there is a clear dependency on that
library. However, if the interface can properly abstract from these details and the
<Document.h> header doesn’t include anything from the JSON library, the physical
dependency might be avoided. Thus, it depends on how well the dependencies can be
(and are) abstracted.



Figure 1-2. The strong transitive, physical coupling between User and orthogonal aspects like JSON
and serialization.

“High level, low level—now I’m confused,” you complain. Yes, I know that
these two terms usually cause some confusion. So before we move on, let’s
agree on the terminology for high level and low level. The origin of these
two terms relates to the way we draw diagrams in the Unified Modeling
Language (UML): functionality that we consider to be stable appears on the
top, on a high level. Functionality that changes more often and is therefore
considered to be volatile or malleable appears on the bottom, the low level.
Unfortunately, when we draw architectures, we often try to show how
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things build on one another, so the most stable parts appear at the bottom of
an architecture. That, of course, causes some confusion. Independent of
how things are drawn, just remember these terms: high level refers to stable
parts of your architecture, and low level refers to the aspects that change
more often or are more likely to change.

Back to the problem: the SRP advises that we should separate concerns and
the things that do not truly belong, i.e., the noncohesive (adhesive) things.
In other words, it advises us to separate the things that change for different
reasons into variation points. Figure 1-3 shows the coupling situation if we
isolate the JSON and serialization aspects into separate concerns.

Figure 1-3. Adherence to the SRP resolves the artificial coupling between User and JSON and
serialization.

Based on this advice, the Document class is refactored in the following way:

class Document 
{ 
 public: 
   // ... 
   virtual ~Document() = default; 



 
   // No more 'exportToJSON()' and 'serialize()' functions. 
   // Only the very basic document operations, that do not 
   // cause strong coupling, remain. 
   // ... 
};

The JSON and serialization aspects are just not part of the fundamental
pieces of functionality of a Document class. The Document class should
merely represent the very basic operations of different kinds of documents.
All orthogonal aspects should be separated. This will make changes
considerably easier. For instance, by isolating the JSON aspect into a
separate variation point and into the new JSON component, switching from
one JSON library to another will affect only this one component. The
change could be done in exactly one place and would happen in isolation
from all the other, orthogonal aspects. It would also be easier to support the
JSON format by means of several JSON libraries. Additionally, any change
to how documents are serialized would affect only one component in the
code: the new Serialization component. Also, Serialization would
act as a variation point that enables isolated, easy change. That would be the
optimal situation.

After your initial disappointment with the Document example, I can see
you’re looking happier again. Perhaps there’s even an “I knew it!” smile on
your face. However, you’re not entirely satisfied yet: “Yes, I agree with the
general idea of separating concerns. But how do I have to structure my
software to separate concerns? What do I have to do to make it work?” That
is an excellent question, but one with many answers that I’ll address in the
upcoming chapters. The first and most important point, however, is the
identification of a variation point, i.e., some aspect in your code where
changes are expected. These variation points should be extracted, isolated,
and wrapped, such that there are no longer any dependencies on these
variations. That will ultimately help make changes easier.

“But that is still only superficial advice!” I hear you say. And you’re
correct. Unfortunately, there is no single answer and there is no simple
answer. It depends. But I promise to give many concrete answers for how to



separate concerns in the upcoming chapters. After all, this is a book on
software design, i.e., a book on managing dependencies. As a little teaser, in
Chapter 3 I will introduce a general and practical approach to this problem:
design patterns. With this general idea in mind, I will show you how to
separate concerns using different design patterns. For instance, the Visitor,
Strategy, and External Polymorphism design patterns come to mind. All of
these patterns have different strengths and weaknesses, but they share the
property of introducing some kind of abstraction to help you to reduce
dependencies. Additionally, I promise to take a close look at how to
implement these design patterns in modern C++.

TIP
I will introduce the Visitor design pattern in “Guideline 16: Use Visitor to Extend
Operations”, and the Strategy design pattern in “Guideline 19: Use Strategy to Isolate
How Things Are Done”. The External Polymorphism design pattern will be the topic of
“Guideline 31: Use External Polymorphism for Nonintrusive Runtime Polymorphism”.

Don’t Repeat Yourself
There is a second, important aspect to changeability. To explain this aspect,
I will introduce another example: a hierarchy of items. Figure 1-4 gives an
impression of this hierarchy.



Figure 1-4. The Item class hierarchy.

At the top of that hierarchy is the Item base class:

//---- <Money.h> ---------------- 
 
class Money { /*...*/ }; 
 
Money operator*( Money money, double factor ); 
Money operator+( Money lhs, Money rhs ); 
 
 
//---- <Item.h> ---------------- 
 
#include <Money.h> 
 
class Item 
{ 
 public: 
   virtual ~Item() = default; 
   virtual Money price() const = 0; 
};



The Item base class represents an abstraction for any kind of item that has a
price tag (represented by the Money class). Via the price() function, you
can query for that price. Of course there are many possible items, but for
illustration purposes, we restrict ourselves to CppBook and
ConferenceTicket:

 
//---- <CppBook.h> ---------------- 
 
#include <Item.h> 
#include <Money.h> 
#include <string> 
 
class CppBook : public Item 
{ 
 public: 
   explicit CppBook( std::string title, std::string author, Money price )   
      : title_( std::move(title) ) 
      , author_( std::move(author) ) 
      , priceWithTax_( price * 1.15 )  // 15% tax rate 
   {} 
 
   std::string const& title() const { return title_; }      
   std::string const& author() const { return author_; }    
 
   Money price() const override { return priceWithTax_; }   
 
 private: 
   std::string title_; 
   std::string author_; 
   Money priceWithTax_; 
}; 

The constructor of the CppBook class expects a title and author in the form
of strings and a price in the form of Money ( ).  Apart from that, it only
allows you to access the title, the author, and the price with the title(),
author(), and price() functions ( , , and ). However, the price()
function is a little special: obviously, books are subject to taxes. Therefore,
the original price of the book needs to be adapted according to a given tax
rate. In this example, I assume an imaginary tax rate of 15%.

The ConferenceTicket class is the second example of an Item:
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//---- <ConferenceTicket.h> ---------------- 
 
#include <Item.h> 
#include <Money.h> 
#include <string> 
 
class ConferenceTicket : public Item 
{ 
 public: 
   explicit ConferenceTicket( std::string name, Money price )   
      : name_( std::move(name) ) 
      , priceWithTax_( price * 1.15 )  // 15% tax rate 
   {} 
 
   std::string const& name() const { return name_; } 
 
   Money price() const override { return priceWithTax_; } 
 
 private: 
   std::string name_; 
   Money priceWithTax_; 
}; 

ConferenceTicket is very similar to the CppBook class, but expects only
the name of the conference and the price in the constructor ( ). Of course,
you can access the name and the price with the name() and price()
functions, respectively. Most importantly, however, the price for a C++
conference is also subject to taxes. Therefore, we again adapt the original
price according to the imaginary tax rate of 15%.

With this functionality available, we can go ahead and create a couple of
Items in the main() function:

#include <CppBook.h> 
#include <ConferenceTicket.h> 
#include <algorithm> 
#include <cstdlib> 
#include <memory> 
#include <vector> 
 
int main() 
{ 
   std::vector<std::unique_ptr<Item>> items{}; 



 
   items.emplace_back( std::make_unique<CppBook>("Effective C++", 19.99) ); 
   items.emplace_back( std::make_unique<CppBook>("C++ Templates", 49.99) ); 
   items.emplace_back( std::make_unique<ConferenceTicket>("CppCon", 999.0) ); 
   items.emplace_back( std::make_unique<ConferenceTicket>("Meeting C++", 
699.0) ); 
   items.emplace_back( std::make_unique<ConferenceTicket>("C++ on Sea", 499.0) 
); 
 
   Money const total_price = 
      std::accumulate( begin(items), end(items), Money{}, 
         []( Money accu, auto const& item ){ 
            return accu + item->price(); 
         } ); 
 
   // ... 
 
   return EXIT_SUCCESS; 
}

In main(), we create a couple of items (two books and three conferences)
and compute the total price of all items.  The total price will, of course,
include the imaginary tax rate of 15%.

That sounds like a good design. We have separated the specific kinds of
items and are able to change how the price of each item is computed in
isolation. It seems that we have fulfilled the SRP and extracted and isolated
the variation points. And of course, there are more items. Many more. And
all of them will make sure that the applicable tax rate is properly taken into
account. Great! Now, while this Item hierarchy will make us happy for
some time, the design unfortunately has a significant flaw. We might not
realize it today, but there’s always a looming shadow in the distance, the
nemesis of problems in software: change.

What happens if for some reason the tax rate changes? What if the 15% tax
rate is lowered to 12%? Or raised to 16%? I can still hear the arguments
from the day the initial design was committed into the codebase: “No, that
will never happen!” Well, even the most unexpected thing may happen. For
instance, in Germany, the tax rate was lowered from 19% to 16% for half a
year in 2021. This, of course, would mean that we have to change the tax
rate in our codebase. Where do we apply the change? In the current
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situation, the change would pretty much affect every class deriving from the
Item class. The change would be all over the codebase!

Just as much as the SRP advises separating variation points, we should take
care not to duplicate information throughout the codebase. As much as
everything should have a single responsibility (a single reason to change),
every responsibility should exist only once in the system. This idea is
commonly called the Don’t Repeat Yourself (DRY) principle. This principle
advises us to not duplicate some key information in many places—but to
design the system such that we can make the change in only one place. In
the optimal case, the tax rate(s) should be represented in exactly one place
to enable you to make an easy change.

Usually the SRP and the DRY principles work together very nicely.
Adhering the SRP will often lead to adhering to DRY as well, and vice
versa. However, sometimes adhering to both requires some extra steps. I
know you’re eager to learn what these extra steps are and how to solve the
problem, but at this point, it’s sufficient to point out the general idea of SRP
and DRY. I promise to revisit this problem and to show you how to solve it
(see “Guideline 35: Use Decorators to Add Customization Hierarchically”).

Avoid Premature Separation of Concerns
At this point, I’ve hopefully convinced you that adhering to SRP and DRY
is a very reasonable idea. You might even be so committed that you plan to
separate everything—all classes and functions—into the most tiny units of
functionality. After all, that’s the goal, right? If this is what you’re thinking
right now, please stop! Take a deep breath. And one more. And then please
listen carefully to the wisdom of Katerina Trajchevska:

Don’t try to achieve SOLID, use SOLID to achieve maintainability.

Both SRP and DRY are your tools for achieving better maintainability and
simplifying change. They are not your goals. While both are of utmost
importance in the long run, it can be very counterproductive to separate
entities without a clear idea about what kind of change will affect you.
Designing for change usually favors one specific kind of change but might
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unfortunately make other kinds of change harder. This philosophy is part of
the commonly known YAGNI principle (You Aren’t Gonna Need It), which
warns you about overengineering (see also “Guideline 5: Design for
Extension”). If you have a clear plan, if you know what kind of change to
expect, then apply SRP and DRY to make that kind of change simple.
However, if you don’t know what kind of change to expect, then don’t
guess—just wait. Wait until you have a clear idea about what kind of
change to expect and then refactor to make the change as easy as possible.

TIP
Just don’t forget that one aspect of easily changing things is having unit tests in place
that give you confirmation that the change did not break the expected behavior.

In summary, change is expected in software and therefore it’s vital to design
for change. Separate concerns and minimize duplication to enable you to
easily change things without being afraid to break other, orthogonal aspects.
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GUIDELINE 2: DESIGN FOR CHANGE

Expect change in software.

Design for easy change and make software more adaptable.

Avoid combining unrelated, orthogonal aspects to prevent
coupling.

Understand that coupling increases the likelihood for change and
makes changes harder.

Adhere to the Single-Responsibility Principle (SRP) to separate
concerns.

Follow the Don’t Repeat Yourself (DRY) principle to minimize
duplication.

Avoid premature abstraction if you are not sure about the next
change.

Guideline 3: Separate Interfaces to Avoid
Artificial Coupling
Let’s revisit the Document example from “Guideline 2: Design for Change”.
I know, by now you probably feel like you’ve seen enough documents, but
believe me, we’re not done yet. There’s still an important coupling aspect to
address. This time we don’t focus on the individual functions in the
Document class but on the interface as a whole:

class Document 
{ 
 public: 
   // ... 
   virtual ~Document() = default; 
 
   virtual void exportToJSON( /*...*/ ) const = 0; 



   virtual void serialize( ByteStream& bs, /*...*/ ) const = 0; 
   // ... 
};

Segregate Interfaces to Separate Concerns
The Document requires deriving classes to handle both JSON exports and
serialization. While, from the point of view of a document, this may seem
reasonable (after all, all documents should be exportable into JSON and
serializable), it unfortunately causes another kind of coupling. Imagine the
following user code:

void exportDocument( Document const& doc ) 
{ 
   // ... 
   doc.exportToJSON( /* pass necessary arguments */ ); 
   // ... 
}

The exportDocument() function is solely interested in exporting a given
document to JSON. In other words, the exportDocument() function is not
concerned with serializing a document or with any other aspect that
Document has to offer. Still, as a result of the definition of the Document
interface, due to coupling many orthogonal aspects together, the
exportDocument() function depends on much more than just the JSON
export. All of these dependencies are unnecessary and artificial. Changing
any of these—for instance, the ByteStream class or the signature of the
serialize() function—has an effect on all users of Document, even those
that do not require serialization. For any change, all the users, including the
exportDocument() function, would need to be recompiled, retested, and, in
the worst case, redeployed (for instance, if delivered in a separate library).
The same thing happens, however, if the Document class is extended by
another function—for instance, an export to another document type. The
problem gets bigger the more orthogonal functionality is coupled in
Document: any change carries the risk of causing a rippling effect
throughout the codebase. Which is sad indeed, as interfaces should help to
decouple, not introduce artificial coupling.



This coupling is caused by a violation of the Interface Segregation Principle
(ISP), which is the I in the SOLID acronym:

Clients should not be forced to depend on methods that they do not use.

The ISP advises separating concerns by segregating (decoupling) interfaces.
In our case, there should be two separate interfaces representing the two
orthogonal aspects of JSON export and serialization:

class JSONExportable 
{ 
 public: 
   // ... 
   virtual ~JSONExportable() = default; 
 
   virtual void exportToJSON( /*...*/ ) const = 0; 
   // ... 
}; 
 
class Serializable 
{ 
 public: 
   // ... 
   virtual ~Serializable() = default; 
 
   virtual void serialize( ByteStream& bs, /*...*/ ) const = 0; 
   // ... 
}; 
 
class Document 
   : public JSONExportable 
   , public Serializable 
{ 
 public: 
   // ... 
};

This separation does not make the Document class obsolete. On the
contrary, the Document class still represents the requirements posed on all
documents. However, this separation of concerns now enables you to
minimize dependencies to only the set of functions that is actually required:
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void exportDocument( JSONExportable const& exportable ) 
{ 
   // ... 
   exportable.exportToJSON( /* pass necessary arguments */ ); 
   // ... 
}

In this form, by depending only on the segregated JSONExportable
interface, the exportDocument() function no longer depends on the
serialization functionality and thus no longer depends on the ByteStream
class. Thus, the segregation of interfaces has helped to reduce coupling.

“But isn’t that just a separation of concerns?” you ask. “Isn’t that just
another example of the SRP?” Yes, indeed it is. I agree that we’ve
essentially identified two orthogonal aspects, separated them, and thus
applied the SRP to the Document interface. Therefore, we could say that
ISP and SRP are the same. Or at least that ISP is a special case of the SRP
because of the focus of the ISP on interfaces. This attitude seems to be the
common opinion in the community, and I agree. However, I still consider it
valuable to talk about ISP. Despite the fact that ISP may only be a special
case, I would argue that it’s an important special case. Unfortunately, it is
often very tempting to aggregate unrelated, orthogonal aspects into an
interface. It might even happen to you that you couple separate aspects into
an interface. Of course, I would never imply that you did this on purpose,
but unintentionally, accidentally. We often do not pay enough attention to
these details. Of course, you argue, “I would never do that.” However, in
“Guideline 19: Use Strategy to Isolate How Things Are Done”, you’ll see
an example that might convince you how easily this can happen. Since
changing interfaces later may be extremely difficult, I believe it pays off to
raise awareness of this problem with interfaces. For that reason, I didn’t
drop the ISP but included it as an important and noteworthy case of the
SRP.

Minimizing Requirements of Template Arguments
Although it appears as if the ISP is applicable only to base classes, and
although the ISP is mostly introduced by means of object-oriented



programming, the general idea of minimizing the dependencies introduced
by interfaces can also be applied to templates. Consider the std::copy()
function, for instance:

template< typename InputIt, typename OutputIt > 
OutputIt copy( InputIt first, InputIt last, OutputIt d_first );

In C++20, we could apply concepts to express the requirements:

template< std::input_iterator InputIt, std::output_iterator OutputIt > 
OutputIt copy( InputIt first, InputIt last, OutputIt d_first );

std::copy() expects a pair of input iterators as the range to copy from,
and an output iterator to the target range. It explicitly requires input iterators
and output iterators, since it does not need any other operation. Thus, it
minimizes the requirements on the passed arguments.

Let’s assume that std::copy() requires std::forward_iterator instead
of std::input_iterator and std::output_iterator:

template< std::forward_iterator ForwardIt, std::forward_iterator ForwardIt > 
OutputIt copy( ForwardIt first, ForwardIt last, ForwardIt d_first );

This would unfortunately limit the usefulness of the std::copy()
algorithm. We would no longer be able to copy from input streams, since
they don’t generally provide the multipass guarantee and do not enable us to
write. That would be unfortunate. However, focusing on dependencies,
std::copy() would now depend on operations and requirements it doesn’t
need. And iterators passed to std::copy() would be forced to provide
additional operations, so std::copy() would force dependencies on them.

This is only a hypothetical example, but it illustrates how important the
separation of concerns in interfaces is. Obviously, the solution is the
realization that input and output capabilities are separate aspects. Thus, after
separating concerns and after applying the ISP, the dependencies are
significantly reduced.



GUIDELINE 3: SEPARATE INTERFACES TO AVOID
ARTIFICIAL COUPLING

Be aware that coupling also affects interfaces.

Adhere to the Interface Segregation Principle (ISP) to separate
concerns in interfaces.

Consider the ISP as a special case of the Single-Responsibility
Principle (SRP).

Understand that the ISP helps for both inheritance hierarchies and
templates.

Guideline 4: Design for Testability
As discussed in “Guideline 1: Understand the Importance of Software
Design”, software changes. It’s expected to change. But every time you
change something in your software, you run the risk of breaking something.
Of course, not intentionally but accidentally, despite your best efforts. The
risk is always there. As an experienced developer, however, you don’t lose
any sleep over that. Let there be risk—you don’t care. You have something
that protects you from accidentally breaking things, something that keeps
the risk at a minimum: your tests.

The purpose of having tests is to be able to assert that all of your software
functionality still works, despite constantly changing things. So obviously,
tests are your protection layer, your life vest. Tests are essential! However,
first of all, you have to write the tests. And in order to write tests and set up
this protective layer, your software needs to be testable: your software must
be written in a way that it is possible, and in the best case even easily
possible, to add tests. Which brings us to the heart of this guideline:
software should be designed for testability.



How to Test a Private Member Function
“Of course I have tests,” you argue. “Everyone should have tests. That’s
common knowledge, isn’t it?” I completely agree. And I believe you that
your codebase is equipped with a reasonable test suite.  But surprisingly,
despite everyone agreeing to the need for tests, not every piece of software
is written with this awareness in mind.  In fact, a lot of code is hard to test.
And sometimes this is simply because the code is not designed to be tested.

To give you an idea, I have a challenge for you. Take a look at the following
Widget class. Widget holds a collection of Blob objects, which once in a
while need to be updated. For that purpose, Widget provides the
updateCollection() member function, which we now assume is so
important that we need to write a test for it. And this is my challenge: how
would you test the updateCollection() member function?

class Widget 
{ 
   // ... 
 private: 
   void updateCollection( /* some arguments needed to update the collection */ 
); 
 
   std::vector<Blob> blobs_; 
   /* Potentially other data members */ 
};

I assume that you immediately see the real challenge: the
updateCollection() member function is declared in the private section of
the class. This means that there is no direct access from the outside and
therefore no direct way of testing it. So take a few seconds to think about
this…

“It’s private, yes, but this is still not much of a challenge. There are multiple
ways I can do that,” you say. I agree, there are multiple ways you could try.
So please, go ahead. You weigh your options, then you come up with your
first idea: “Well, the easiest approach would be to test the function via some
other, public member function that internally calls the
updateCollection() function.” That sounds like an interesting first idea.
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Let’s assume that the collection needs to be updated when a new Blob is
added to it. Calling the addBlob() member function would trigger the
updateCollection() function:

class Widget 
{ 
 public: 
   // ... 
   void addBlob( Blob const& blob, /*...*/ ) 
   { 
      // ... 
      updateCollection( /*...*/ ); 
      // ... 
   } 
 
 private: 
   void updateCollection( /* some arguments needed to update the collection */ 
); 
 
   std::vector<Blob> blobs_; 
   /* Potentially other data members */ 
};

Although this sounds like a reasonable thing to do, it’s also something you
should avoid if possible. What you are suggesting is a so-called white box
test. A white box test knows about the internal implementation details of
some function and tests based on that knowledge. This introduces a
dependency of the test code on the implementation details of your
production code. The problem with this approach is that software changes.
Code changes. Details change. For instance, at some point in the future, the
addBlob() function might be rewritten so it does not have to update the
collection anymore. If this happens, your test no longer performs the task it
was written to do. You would lose your updateCollection() test,
potentially without even realizing it. Therefore, a white box test poses a
risk. Just as much as you should avoid and reduce dependencies in your
production code (see “Guideline 1: Understand the Importance of Software
Design”), you should also avoid dependencies between your tests and the
details of your production code.



What we really need is a black box test. A black box test does not make any
assumptions about internal implementation details, but tests only for
expected behavior. Of course, this kind of test can also break if you change
something, but it shouldn’t break if some implementation details change—
only if the expected behavior changes.

“OK, I get your point,” you say. “But you don’t suggest making the update 
Col lec tion() function public, do you?” No, rest assured that isn’t what
I’m suggesting. Of course, sometimes this may be a reasonable approach.
But in our case, I doubt that this would be a wise move. The
updateCollection() function should not be called just for fun. It should
be called only for a good reason, only at the right time, and probably to
preserve some kind of invariant. This is something we should not entrust a
user with. So no, I don’t think that the function would be a good candidate
for the public section.

“OK, good, just checking. Then let’s simply make the test a friend of the
Widget class. This way it would have full access and could call the
private member function unhindered”:

class Widget 
{ 
   // ... 
 private: 
   friend class TestWidget; 
 
   void updateCollection( /* some arguments needed to update the collection */ 
); 
 
   std::vector<Blob> blobs_; 
   /* Potentially other data members */ 
};

Yes, we could add a friend. Let’s assume that there is the TestWidget test
fixture, containing all the tests for the Widget class. We could make this test
fixture a friend of the Widget class. Although this may sound like another
reasonable approach, I unfortunately have to be the spoilsport again. Yes,
technically this would solve the problem, but from a design perspective,
we’ve just introduced an artificial dependency again. By actively changing



the production code to introduce the friend declaration, the production
code now knows about the test code. And while the test code should of
course know about the production code (that’s the point of the test code),
the production code should not have to know about the test code. This
introduces a cyclic dependency, which is an unfortunate and artificial
dependency.

“You sound like this is the worst thing in the world. Is it really that bad?”
Well, sometimes this may actually be a reasonable solution. It definitely is a
simple and quick solution. However, since right now we have the time to
discuss all of our options, there definitely must be something better than
adding a friend.

NOTE
I don’t want to make things worse, but in C++ we don’t have a lot of friends. Yes, I
know, this sounds sad and lonely, but of course I mean the keyword friend: in C++,
friend is not your friend. The reason is that friends introduce coupling, mostly
artificial coupling, and we should avoid coupling. Of course, exceptions can be made for
the good friends, the ones you cannot live without, such as hidden friends, or idiomatic
uses of friend, such as the Passkey idiom. A test is more like a friend on social media,
so declaring a test a friend does not sound like a good choice.

“OK, then let’s switch from private to protected and make the test
derive from the Widget class,” you suggest. “This way, the test would gain
full access to the updateCollection() function”:

class Widget 
{ 
   // ... 
 protected: 
   void updateCollection( /* some arguments needed to update the collection */ 
); 
 
   std::vector<Blob> blobs_; 
   /* Potentially other data members */ 
}; 
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class TestWidget : private Widget 
{ 
   // ... 
};

Well, I have to admit that technically this approach would work. However,
the fact that you’re suggesting inheritance to solve this issue tells me that
we definitely have to talk about the meaning of inheritance and how to use
it properly. To quote the two pragmatic programmers:

Inheritance is rarely the answer.

Since we’ll be focusing on this topic fairly soon, let me just say that it feels
like we’re abusing inheritance for the sole reason of gaining access to
nonpublic member functions. I’m pretty certain this isn’t why inheritance
was invented. Using inheritance to gain access to the protected section of
a class is like the bazooka approach to something that should be very
simple. It is, after all, almost identical to making the function public,
because everyone can easily gain access. It seems we really haven’t
designed the class to be easily testable.

“Come on, what else could we do? Or do you really want me to use the
preprocessor and define all private labels as public?”:

#define private public 
 
class Widget 
{ 
   // ... 
 private: 
   void updateCollection( /* some arguments needed to update the collection */ 
); 
 
   std::vector<Blob> blobs_; 
   /* Potentially other data members */ 
};

OK, let’s take a deep breath. Although this last approach may seem funny,
keep in mind that we have now left the range of reasonable arguments.  If
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we seriously consider using the preprocessor to hack our way into the
private section of the Widget class, then all is lost.

The True Solution: Separate Concerns
“OK then, what should I do to test the private member function? You have
already discarded all the options.” No, not all the options. We have not yet
discussed the one design approach that I highlighted in “Guideline 2:
Design for Change”: separation of concerns. My approach would be to
extract the private member function from the class and make it a separate
entity in our codebase. My preferred solution in this case is to extract the
member function as a free function:

void updateCollection( std::vector<Blob>& blobs 
                     , /* some arguments needed to update the collection */ ); 
 
class Widget 
{ 
   // ... 
 private: 
   std::vector<Blob> blobs_; 
   /* Potentially other data members */ 
};

All calls to the previous member function could be replaced with a call to
the free updateCollection() function by just adding blobs_ as the first
function argument. Alternatively, if there is some state attached to the
function, we extract it in the form of another class. Either way, we design
the resulting code such that it’s easy, perhaps even trivial, to test:

namespace widgetDetails { 
 
class BlobCollection 
{ 
 public: 
   void updateCollection( /* some arguments needed to update the collection */ 
); 
 
 private: 
   std::vector<Blob> blobs_; 



}; 
 
} // namespace widgetDetails 
 
class Widget 
{ 
   // ... 
 private: 
   widgetDetails::BlobCollection blobs_; 
   /* Other data members */ 
};

“You cannot be serious!” you exclaim. “Isn’t this the worst of all options?
Aren’t we artificially separating two things that belong together? And isn’t
the SRP telling us that we should keep the things that belong together close
to one another?” Well, I don’t think so. On the contrary, I firmly believe that
only now are we adhering to the SRP: the SRP states that we should isolate
the things that do not belong together, the things that can change for
different reasons. Admittedly, at first sight, it may appear as if Widget and
updateCollection() belong together, since after all, the blob_ data
member needs to be updated once in a while. However, the fact that the
update Col lection() function isn’t properly testable is a clear indication
that the design does not fit yet: if anything that needs explicit testing can’t
be tested, something is amiss. Why make our lives so much harder and hide
the function to test in the private section of the Widget class? Since
testing plays a vital role in the presence of change, testing represents just
another way to help decide which things belong together. If the
updateCollection() function is important enough that we want to test it
in isolation, then apparently it changes for a reason other than Widget. This
indicates that Widget and updateCollection() do not belong together.
Based on the SRP, the updateCollection() function should be extracted
from the class.

“But isn’t this against the idea of encapsulation?” you ask. “And don’t you
dare wave away encapsulation. I consider encapsulation to be very
important!” I agree, it is very important, fundamentally so! However,
encapsulation is just one more reason to separate concerns. As Scott Meyers
claims in his book, Effective C++, extracting functions from a class is a



step toward increasing encapsulation. According to Meyers, you should
generally prefer nonmember non-friend functions to member functions. 
This is because every member function has full access to every member of a
class, even the private members. However, in the extracted form, the
updateCollection() function is restricted to just the public interface of
the Widget class and is not able to access the private members. Therefore,
these private members become a little more encapsulated. Note that the
same argument holds true for extracting the BlobCollection class: the
BlobCollection class is not able to touch the nonpublic members of the
Widget class, and therefore Widget also becomes a little more
encapsulated.

By separating concerns and extracting this piece of functionality, you now
gain several advantages. First, as just discussed, the Widget class becomes
more encapsulated. Fewer members can access the private members.
Second, the extracted update Col lection() function is easily, even
trivially, testable. You don’t even need a Widget for that but instead can
either pass std::vector<Blob> as the first argument (not the implicit first
argument of any member function, the this pointer) or call the public
member function. Third, you don’t have to change any other aspect in the
Widget class: you simply pass the blobs_ member to the
updateCollection() function whenever you need to update the collection.
No need to add any other public getter. And, probably most importantly,
you can now change the function in isolation, without having to deal with
Widget. This indicates that you have reduced dependencies. While in the
initial setup the updateCollection() function was tightly coupled to the
Widget class (yes, the this pointer), we have now severed these ties. The
updateCollection() function is now a separate service that might even be
reused.

I can see that you still have questions. Maybe you’re concerned that this
means you shouldn’t have any member functions anymore. No, to be clear,
I did not suggest that you should extract each and every member function
from your classes. I merely suggested you take a closer look at those
functions that need to be tested but are placed in the private section of
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your class. Also, you might wonder how this works with virtual functions,
which cannot be extracted in the form of a free function. Well, there’s no
quick answer for that, but it’s something that we will deal with in many
different ways throughout this book. My objective will always be to reduce
coupling and to increase testability, even by separating virtual functions.

In summary, do not hinder your design and testability with artificial
coupling and artificial boundaries. Design for testability. Separate concerns.
Free your functions!

GUIDELINE 4: DESIGN FOR TESTABILITY

Understand that tests are your protection layer against accidentally
breaking things.

Keep in mind that tests are essential, and so is testability.

Separate concerns for the sake of testability.

Consider private member functions that need testing to be
misplaced.

Prefer nonmember non-friend functions to member functions.

Guideline 5: Design for Extension
There is an important aspect about changing software that I haven’t
highlighted yet: extensibility. Extensibility should be one of the primary
goals of your design. Because, frankly speaking, if you’re no longer able to
add new functionality to your code then your code has reached the end of
its lifetime. Thus, adding new functionality—extending the codebase—is of
fundamental interest. For that reason, extensibility should indeed be one of
your primary goals and a driving factor for good software design.

The Open-Closed Principle



Design for extension is unfortunately not something that just falls into your
lap or magically materializes. No, you will have to explicitly take
extensibility into account when designing software. We’ve already seen an
example of a naive approach of serializing documents in “Guideline 2:
Design for Change”. In that context, we used a Document base class with a
pure virtual serialize() function:

class Document 
{ 
 public: 
   // ... 
   virtual ~Document() = default; 
 
   virtual void serialize( ByteStream& bs, /*...*/ ) const = 0; 
   // ... 
};

Since serialize() is a pure virtual function, it needs to be implemented
by all deriving classes, including the PDF class:

class PDF : public Document 
{ 
 public: 
   // ... 
   void serialize( ByteStream& bs, /*...*/ ) const override; 
   // ... 
};

So far, so good. The interesting question is: how do we implement the
serialize() member function? One requirement is that at a later point in
time we are able to convert the bytes back into a PDF instance (we want to
deserialize bytes back to a PDF). For that purpose, it is essential to store the
information that the bytes represent. In “Guideline 2: Design for Change”,
we accomplished this with an enumeration:

enum class DocumentType 
{ 
   pdf, 
   word, 



   // ... Potentially many more document types 
};

This enumeration can now be used by all derived classes to put the type of
the document at the beginning of the byte stream. This way, during
deserialization, it’s easy to detect which kind of document is stored. Sadly,
this design choice turns out to be an unfortunate decision. With that
enumeration, we have accidentally coupled all kinds of document: the PDF
class knows about the Word format. And of course the corresponding Word
class would know about the PDF format. Yes, you are correct—they don’t
know about the implementation details, but they are still aware of each
other.

This coupling situation is illustrated in Figure 1-5. From an architectural
point of view, the DocumentType enumeration resides on the same level as
the PDF and Word classes. Both types of documents use (and thus depend
on) the DocumentType enumeration.

Figure 1-5. Artificial coupling of different document types via the DocumentType enumeration.



The problem with this becomes obvious if we try to extend the
functionality. Next to PDF and Word, we now also want to support a plain
XML format. Ideally, all we should have to do is add the XML class as
deriving from the Document class. But, unfortunately, we also have to adapt
the DocumentType enumeration:

enum class DocumentType 
{ 
   pdf, 
   word, 
   xml,   // The new type of document 
   // ... Potentially many more document types 
};

This change will at least cause all the other document types (PDF, Word,
etc.) to recompile. Now you may just shrug your shoulders and think, “Oh
well! It just needs to recompile.” Well, note that I said at least. In the worst
case, this design has significantly limited others to extend the code—i.e., to
add new kinds of documents—because not everyone is able to extend the
DocumentType enumeration. No, this kind of coupling just doesn’t feel
right: PDF and Word should be entirely unaware of the new XML format.
They shouldn’t see or feel a thing, not even a recompilation.

The problem in this example can be explained as a violation of the Open-
Closed Principle (OCP). The OCP is the second of the SOLID principles. It
advises us to design software such that it is easy to make the necessary
extensions:

Software artifacts (classes, modules, functions, etc.) should be open for
extension, but closed for modification.

The OCP tells us that we should be able to extend our software (open for
extension). However, the extension should be easy and, in the best case,
possible by just adding new code. In other words, we shouldn’t have to
modify existing code (closed for modification).

In theory, the extension should be easy: we should only have to add the new
derived class XML. This new class alone would not require any

37



modifications in any other piece of code. Unfortunately, the serialize()
function artificially couples the different kinds of documents and requires a
modification of the DocumentType enumeration. This modification, in turn,
has an impact on the other types of Document, which is exactly what the
OCP advises against.

Luckily, we’ve already seen a solution for how to achieve that for the
Document example. In this case, the right thing to do is to separate concerns
(see Figure 1-6).

By separating concerns, by grouping the things that truly belong together,
the accidental coupling between different kinds of documents is gone. All
code dealing with serialization is now properly grouped inside the
Serialization component, which can logically reside on another level of
the architecture. Serialization depends on all types of documents (PDF,
Word, XML, etc.), but none of the document types depend on
Serialization. In addition, none of the documents are aware of any other
type of document (as it should be).



Figure 1-6. Separation of concerns resolves the violation of the OCP

“Wait a second!” you say. “In the code for the serialization, we still need the
enumeration, don’t we? How else would I store the information about what
the stored bytes represent?” I’m glad you’re making this observation. Yes,
inside the Serialization component we will still (very likely) need
something like the DocumentType enumeration. However, by separating
concerns, we have properly resolved this dependency problem. None of the



different types of documents depends on the DocumentType enumeration
anymore. All dependency arrows now go from the low level (the
Serialization component) to the high level (PDF and Word). And that
property is essential for a proper, good architecture.

“But what about adding a new type of document? Doesn’t that require a
modification in the Serialization component?” Again, you are absolutely
correct. Still, this is not a violation of OCP, which advises that we should
not have to modify existing code on the same architectural level or on
higher levels. However, there is no way you can control or prevent
modifications on the lower levels. Serialization must depend on all types
of documents and therefore must be adapted for every new type of
document. For that reason, Serialization must reside on a lower level
(think depending level) of our architecture.

As also discussed in “Guideline 2: Design for Change”, the solution in this
example is the separation of concerns. Thus, it appears as if the real solution
is to adhere to the SRP. For that reason, there are some critical voices that
don’t consider the OCP a separate principle but the same as the SRP. I
admit that I understand this reasoning. Very often the separation of concerns
already leads to the desired extensibility. It’s something we will experience
multiple times throughout this book, in particular when we talk about
design patterns. Thus, it stands to reason that SRP and OCP are related or
even the same.

On the other hand, in this example we have seen that there are some
specific, architectural considerations about the OCP that we didn’t take into
account while talking about the SRP. Also, as we will experience in
“Guideline 15: Design for the Addition of Types or Operations”, we will
often have to make explicit decisions about what we want to extend and
how we want to extend it. That decision can significantly influence how we
apply the SRP and the way we design our software. Therefore, the OCP
seems to be more about the awareness of extensions and conscious
decisions about extensions than the SRP. As such, it is perhaps a little more
than just an afterthought of the SRP. Or perhaps it just depends.38



Either way, this example indisputably demonstrates that extensibility should
be explicitly considered during software design, and that the desire for
extending our software in a specific way is an excellent indication for the
need to separate concerns. It is important to understand how software will
be extended, to identify such customization points, and to design so that this
kind of extension can be performed easily.

Compile-Time Extensibility
The Document example may give the impression that all of these design
considerations apply to runtime polymorphism. No, absolutely not: the
same considerations and the same arguments also apply to compile-time
problems. To illustrate this, I now reach for a couple of examples from the
Standard Library. Of course, it is of utmost interest that you’re able to
extend the Standard Library. Yes, you’re supposed to use the Standard
Library, but you are also encouraged to build on it and add your own pieces
of functionality. For that reason, the Standard Library is designed for
extensibility. But interestingly, it isn’t using base classes for that purpose,
but primarily builds on function overloading, templates, and (class)
template specialization.

An excellent example of extension by function overloading is the
std::swap() algorithm. Since C++11, std::swap() has been defined in
this way:

namespace std { 
 
template< typename T > 
void swap( T& a, T& b ) 
{ 
   T tmp( std::move(a) ); 
   a = std::move(b); 
   b = std::move(tmp); 
} 
 
} // namespace std



Due to the fact that std::swap() is defined as a function template, you can
use it for any type: fundamental types like int and double, Standard
Library types like std::string, and, of course, your own types. However,
there may be some types that require special attention, some types that
cannot or should not be swapped by means of std::swap() (for instance,
because they cannot be efficiently moved) but could still be swapped
efficiently by different means. But still, it’s expected that value types can be
swapped, as it is also expressed by Core Guideline C.83:

For value-like types, consider providing a noexcept swap function.

In such a case, you can overload std::swap() for your own type:

namespace custom { 
 
class CustomType 
{ 
   /* Implementation that requires a special form of swap */ 
}; 
 
void swap( CustomType& a, CustomType& b ) 
{ 
   /* Special implementation for swapping two instances of type 'CustomType' 
*/ 
} 
 
} // namespace custom

If swap() is used correctly, this custom function will perform a special kind
of swap operation on two instances of CustomType:

template< typename T > 
void some_function( T& value ) 
{ 
   // ... 
   T tmp( /*...*/ ); 
 
   using std::swap;     // Enable the compiler to consider std::swap for the 
                        // subsequent call 
   swap( tmp, value );  // Swap the two values; thanks to the unqualified call 
                        // and thanks to ADL this would call 'custom::swap()' 
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   // ...               // in case 'T' is 'CustomType' 
}

Obviously, std::swap() is designed as a customization point, allowing you
to plug in new custom types and behavior. The same is true of all
algorithms in the Standard Library. Consider, for instance, std::find()
and std::find_if():

template< typename InputIt, typename T > 
constexpr InputIt find( InputIt first, InputIt last, T const& value ); 
 
template< typename InputIt, typename UnaryPredicate > 
constexpr InputIt find_if( InputIt first, InputIt last, UnaryPredicate p );

By means of the template parameters, and implicitly, the corresponding
concepts, std::find() and std::find_if() (just as all other algorithms)
enable you to use your own (iterator) types to perform a search. In addition,
std::find_if() allows you to customize how the comparison of elements
is handled. Thus, these functions are definitely designed for extension and
customization.

The last kind of customization point is template specialization. This
approach is, for instance, used by the std::hash class template. Assuming
the CustomType from the std::swap() example, we can specialize
std::hash explicitly:

template<> 
struct std::hash<CustomType> 
{ 
   std::size_t operator()( CustomType const& v ) const noexcept 
   { 
      return /*...*/; 
   } 
};

The design of std::hash puts you in a position to adapt its behavior for
any custom type. Most noteworthy, you are not required to modify any
existing code; it’s enough to provide this separate specialization to adapt to
special requirements.



Almost the entire Standard Library is designed for extension and
customization. This shouldn’t come as a surprise, however, because the
Standard Library is supposed to represent one of the highest levels in your
architecture. Thus, the Standard Library cannot depend on anything in your
code, but you depend entirely on the Standard Library.

Avoid Premature Design for Extension
The C++ Standard Library is a great example of designing for extension.
Hopefully it gives you a feeling for how important extensibility really is.
However, although extensibility is important, this doesn’t mean that you
should automatically, without reflection, reach for either base classes or
templates for every possible implementation detail just to guarantee
extensibility in the future. Just as you shouldn’t prematurely separate
concerns, you should also not prematurely design for extension. Of course,
if you have a good idea about how your code will evolve, then by all means,
go ahead and design it accordingly. However, remember the YAGNI
principle: if you do not know how the code will evolve, then it may be wise
to wait, instead of anticipating an extension that will never happen. Perhaps
the next extension will give you an idea about future extensions, which puts
you in a position to refactor the code such that subsequent extensions are
easy. Otherwise you might run into the problem that favoring one kind of
extension makes other kinds of extensions much more difficult (see, for
instance, “Guideline 15: Design for the Addition of Types or Operations”).
That is something you should avoid, if possible.

In summary, designing for extension is an important part of design for
change. Therefore, explicitly keep an eye out for pieces of functionality that
are expected to be extended and design the code so that extension is easy.



GUIDELINE 5: DESIGN FOR EXTENSION

Favor design that makes it easy to extend code.

Adhere to the Open-Closed Principle (OCP) to keep code open for
extension but closed for modification.

Design for code additions by means of base classes, templates,
function overloading, or template specialization.

Avoid premature abstraction if you are not sure about the next
addition.

1  But of course you would never even try to print the current C++ standard. You would either
use a PDF of the official C++ standard or use the current working draft. For most of your daily
work, however, you might want to refer to the C++ reference site.

2  Unfortunately, I can’t present any numbers, as I can hardly say that I have a complete
overview of the vast realm of C++. On the contrary, I might not even have a complete
overview of the sources I’m aware of! So please consider this as my personal impression and
the way I perceive the C++ community. You may have a different impression.

3  Whether or not the code modification is risky may very much depend on your test coverage.
A good test coverage may actually absorb some of the damage bad software design may cause.

4  Kent Beck, Test-Driven Development: By Example (Addison-Wesley, 2002).

5  Robert C. Martin, Clean Architecture (Addison-Wesley, 2017).

6  These are indeed my own words, as there is no single, common definition of software design.
Consequently, you may have your own definition of what software design entails and that is
perfectly fine. However, note that this book, including the discussion of design patterns, is
based on my definition.

7  Just to be clear: computer science is a science (it’s in the name). Software engineering
appears to be a hybrid form of science, craft, and art. And one aspect of the latter is software
design.

8  With this metaphor, I’m not trying to imply that architects for buildings work at the
construction site all day. Very likely, such an architect spends as much time in a comfy chair
and in front of a computer as people like you and me. But I think you get the point.

9  Substitution Failure Is Not An Error (SFINAE) is a basic template mechanism commonly
used as a substitute for C++20 concepts to constrain templates. For an explanation of SFINAE
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and std::enable_if in particular, refer to your favorite textbook about C++ templates. If you
don’t have any, a great choice is the C++ template bible: David Vandevoorde, Nicolai Josuttis,
and Douglas Gregor’s C++ Templates: The Complete Guide (Addison-Wesley).

10  For a lot more information on physical and logical dependency management, see John
Lakos’s “dam” book, Large-Scale C++ Software Development: Process and Architecture
(Addison-Wesley).

11  Martin Fowler, “Who Needs an Architect?” IEEE Software, 20, no. 5 (2003), 11–13,
https://doi.org/10.1109/MS.2003.1231144.

12  A very good introduction to microservices can be found in Sam Newman’s book Building
Microservices: Designing Fine-Grained Systems, 2nd ed. (O’Reilly).

13  Mark Richards and Neal Ford, Fundamentals of Software Architecture: An Engineering
Approach (O’Reilly, 2020).

14  The term implementation pattern was first used in Kent Beck’s book Implementation Patterns
(Addison-Wesley). In this book, I’m using that term to provide a clear distinction from the
term design pattern, since the term idiom may refer to a pattern on either the Software Design
level or the Implementation Details level. I will use the term consistently to refer to commonly
used solutions on the Implementation Details level.

15  Second-favorite after this one, of course. If this is your only book, then you might refer to the
classic Effective C++: 55 Specific Ways to Improve Your Programs and Designs, 3rd ed., by
Scott Meyers (Addison-Wesley).

16  The Template Method and Bridge design patterns are 2 of the 23 classic design patterns
introduced in the so-called Gang of Four (GoF) book by Erich Gamma et al., Design Patterns:
Elements of Reusable Object-Oriented Software. I won’t go into detail about the Template
Method in this book, but you’ll find good explanations in various textbooks, including the GoF
book itself. I will, however, explain the Bridge design pattern in “Guideline 28: Build Bridges
to Remove Physical Dependencies”.

17  Bjarne Stroustrup, The C++ Programming Language, 3rd ed. (Addison-Wesley, 2000).

18  Kudos to John Lakos, who argues similarly and uses C++98 in his book, Large-Scale C++
Software Development: Process and Architecture (Addison-Wesley).

19  Yes, Ben and Jason, you have read correctly, I will not constexpr ALL the things. See Ben
Deane and Jason Turner, “constexpr ALL the things”, CppCon 2017.

20  Michael Feathers, Working Effectively with Legacy Code (Addison-Wesley, 2013).

21  David Thomas and Andrew Hunt, The Pragmatic Programmer: Your Journey to Mastery,
20th Anniversary Edition (Addison Wesley, 2019).

22  Tom DeMarco, Structured Analysis and System Specification (Prentice Hall, 1979).

23  SOLID is an acronym of acronyms, an abbreviation of the five principles described in the
next few guidelines: SRP, OCP, LSP, ISP, and DIP.

24  The first book on the SOLID principles was Robert C. Martin’s Agile Software Development:
Principles, Patterns, and Practices (Pearson). A newer and much cheaper alternative is Clean
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Architecture, also from Robert C. Martin (Addison-Wesley).

25  Don’t forget that the design decisions taken by that external library may impact your own
design, which would obviously increase the coupling.

26  That includes the classes that other people may have written, i.e., classes that you do not
control. And no, the other people won’t be happy about the change. Thus, the change may be
really difficult.

27  An enumeration seems to be an obvious choice, but of course there are other options as well.
In the end, we need an agreed-upon set of values that represent the different document formats
in the byte representation.

28  You might be wondering about the explicit use of the explicit keyword for this constructor.
Then you might also be aware that Core Guideline C.46 advises using explicit by default for
single-argument constructors. This is really good and highly recommended advice, as it
prevents unintentional, potentially undesirable conversions. While not as valuable, the same
advice is also reasonable for all the other constructors, except for the copy and move
constructors, which don’t perform a conversion. At least it doesn’t hurt.

29  You might realize I’ve picked the names of the three conferences I regularly attend: CppCon,
Meeting C++, and C++ on Sea. There are many more C++ conferences, though. To give a few
examples: ACCU, Core C++, pacific++, CppNorth, emBO++, and CPPP. Conferences are a
great and fun way to stay up to date with C++. Make sure to check out the Standard C++
Foundation home page for any upcoming conferences.

30  Katerina Trajchevska, “Becoming a Better Developer by Using the SOLID Design
Principles”, Laracon EU, August 30–31, 2018.

31  Robert C. Martin, Agile Software Development: Principles, Patterns, and Practices.

32  If you don’t have a test suite in place, then you have work to do. Seriously. A very coherent
reference to get started is Ben Saks’s talk on unit tests, “Back to Basics: Unit Tests”, from
CppCon 2020. A second, very good reference to wrap your mind around the whole topic of
testing and test-driven development in particular is Jeff Langr’s book, Modern C{plus}{plus}
Programming with Test-Driven Development (O’Reilly).

33  I know, “everyone agrees” is unfortunately far from reality. If you need proof that the
seriousness of tests has not yet reached every project and every developer, take a look at this
issue from the OpenFOAM issue tracker.

34  David Thomas and Andrew Hunt, The Pragmatic Programmer: Your Journey to Mastery.

35  We may even have entered the scary realm of undefined behavior.

36  You can find this compelling argument in item 23 of Scott Meyers’s Effective C++.

37  Bertrand Meyer, Object-Oriented Software Construction, 2nd ed. (Pearson, 2000).

38  The answer “It depends!” will of course satisfy even the strongest critics of the OCP.

39  The C++ Core Guidelines are a community effort to collect and agree on a set of guidelines
for writing good C++ code. They best represent the common sense of what idiomatic C++ is.
You can find these guidelines on GitHub.
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40  The abbreviation ADL refers to Argument Dependent Lookup. See the CppReference or my
CppCon 2020 talk for an introduction.
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Chapter 2. The Art of Building
Abstractions

Abstractions play a vital role in software design and software architecture.
In other words, good abstractions are the key to managing complexity.
Without them, good design and proper architecture are hard to imagine.
Still, building good abstractions and using them well is surprisingly
difficult. As it turns out, building and using abstractions comes with a lot of
subtleties, and therefore feels more like an art than a science. This chapter
goes into detail about the meaning of abstractions and the art of building
them.

In “Guideline 6: Adhere to the Expected Behavior of Abstractions”, we will
talk about the purpose of abstractions. We will also talk about the fact that
abstractions represent a set of requirements and expectations and why it is
so important to adhere to the expected behavior of abstractions. In that
context I will introduce another design principle, the Liskov Substitution
Principle (LSP).

In “Guideline 7: Understand the Similarities Between Base Classes and
Concepts”, we will compare the two most commonly used abstractions:
base classes and concepts. You will understand that from a semantic point
of view both approaches are very similar since both are able to express
expected behavior.

In “Guideline 8: Understand the Semantic Requirements of Overload Sets”,
I will extend the discussion about semantic requirements and talk about a
third kind of abstraction: function overloading. You will understand that all
functions, being part of an overload set, also have an expected behavior and
thus also have to adhere to the LSP.

In “Guideline 9: Pay Attention to the Ownership of Abstractions”, I will
focus on the architectural meaning of abstractions. I will explain what an



architecture is and what we expect from the high and low levels of an
architecture. I will also show you that from an architectural point of view, it
is not enough to just introduce an abstraction to resolve dependencies. To
explain this, I will introduce the Dependency Inversion Principle (DIP),
vital advice on how to build an architecture by means of abstractions.

In “Guideline 10: Consider Creating an Architectural Document”, we will
talk about the benefits of an architectural document. Hopefully, this will be
an incentive to create one in case this wasn’t already on your radar.

Guideline 6: Adhere to the Expected
Behavior of Abstractions
One of the key aspects of decoupling software, and thus one of the key
aspects of software design, is the introduction of abstractions. For that
reason, you would expect that this is a relatively straightforward, easy thing
to do. Unfortunately, as it turns out, building abstractions is difficult.

To demonstrate what I mean, let’s take a look at an example. I have selected
the classic example for that purpose. Chances are, you might already know
this example. If so, please feel free to skip it. However, if you’re not
familiar with the example, then this may serve as an eye-opener.

An Example of Violating Expectations
Let’s start with a Rectangle base class:

 
class Rectangle 
{ 
 public: 
   // ... 
   virtual ~Rectangle() = default;   
 
   int getWidth() const;   
   int getHeight() const; 
 
   virtual void setWidth(int);   



   virtual void setHeight(int); 
 
   virtual int getArea() const;   
   // ... 
 
 private: 
   int width;   
   int height; 
}; 

First of all, this class is designed as a base class, since it provides a virtual
destructor ( ). Semantically, a Rectangle represents an abstraction for
different kinds of rectangles. And technically, you can properly destroy an
object of derived type via a pointer to Rectangle.

Second, the Rectangle class comes with two data members: width and
height ( ). That is to be expected, since a rectangle has two side lengths,
which are represented by width and height. The getWidth() and
getHeight() member functions can be used to query the two side lengths (

), and via the setWidth() and setHeight() member functions, we can
set the width and height ( ). It’s important to note that I can set these two
independently; i.e., I can set the width without having to modify the
height.

Finally, there is a getArea() member function ( ). getArea() computes
the area of the rectangle, which is of course implemented by returning the
product of width and height.

Of course there may be more functionality, but the given members are the
ones that are important for this example. As it is, this seems to be a pretty
nice Rectangle class. Obviously, we’re off to a good start. But, of course
there’s more. For instance, there is the Square class:

 
class Square : public Rectangle   
{ 
 public: 
   // ... 
   void setWidth(int) override;   
   void setHeight(int) override;   
 



   int getArea() const override;   
   // ... 
}; 

The Square class publicly inherits from the Rectangle class ( ). And that
seems pretty reasonable: from a mathematical perspective, a square appears
to be a special kind of rectangle.

A Square is special, in the sense that it has only one side length. But the
Rectangle base class comes with two lengths: width and height. For that
reason, we have to make sure that the invariants of the Square are always
preserved. In this given implementation with two data members and two
getter functions, we have to make sure that both data members always have
the same value. Therefore, we override the setWidth() member function to
set both width and height ( ). We also override the setHeight() member
function to set both width and height ( ).

Once we have done that, a Square will always have equal side lengths, and
the getArea() function will always return the correct area of a Square ( ).
Nice!

Let’s put these two classes to good use. For instance, we could think about a
function that transforms different kinds of rectangles:

 
void transform( Rectangle& rectangle )   
{ 
   rectangle.setWidth ( 7 );   
   rectangle.setHeight( 4 );   
 
   assert( rectangle.getArea() == 28 );   
 
   // ... 
} 

The transform() function takes any kind of Rectangle by means of a
reference to non-const ( ). That’s reasonable, because we want to change
the given rectangle. A first possible way to change the rectangle is to set the
width via the setWidth() member function to 7 ( ). Then we could
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change the height of the rectangle to 4 via the setHeight() member
function ( ).

At this point, I would argue that you have an implicit assumption. I am
pretty certain that you assume that the area of the rectangle is 28, because,
of course, 7 times 4 is 28. That is an assumption we can test via an assertion
( ).

The only thing missing is to actually call the transform() function. That’s
what we do in the main() function:

 
int main() 
{ 
   Square s{};   
   s.setWidth( 6 ); 
 
   transform( s );   
 
   return EXIT_SUCCESS; 
} 

In the main() function, we create a special kind of rectangle: a Square (
).  This square is passed to the transform() function, which of course
works, since a reference to a Square can be implicitly converted to a
reference to a Rectangle ( ).

If I were to ask you, “What happens?” I’m pretty sure you would answer,
“The assert() fails!” Yes, indeed, the assert() will fail. The expression
passed to the assert() will evaluate to false, and assert() will crash the
process with a SIGKILL signal. Well, that’s certainly unfortunate. So let’s do
a postmortem analysis: why does the assert() fail? Our expectation in the
transform() function is that we can change the width and height of a
rectangle independently. This expectation is explicitly expressed with the
two function calls to setWidth() and setHeight(). However,
unexpectedly, this special kind of rectangle does not allow that: to preserve
its own invariants, the Square class must always make sure that both side
lengths are equal. Thus, the Square class has to violate this expectation.
This violation of the expectation in an abstraction is a violation of the LSP.
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The Liskov Substitution Principle
The LSP is the third of the SOLID principles and is concerned with
behavioral subtyping, i.e., with the expected behavior of an abstraction.
This design principle is named after Barbara Liskov, who initially
introduced it in 1988 and clarified it with Jeannette Wing in 1994:

Subtype Requirement: Let φ(x) be a property provable about objects x of
type T. Then φ(y) should be true for objects y of type S where S is a
subtype of T.

This principle formulates what we commonly call an IS-A relationship. This
relationship, i.e., the expectations in an abstraction, must be adhered to in a
subtype. That includes the following properties:

Preconditions cannot be strengthened in a subtype: a subtype cannot
expect more in a function than what the super type expresses. That
would violate the expectations in the abstraction:

struct X 
{ 
   virtual ~X() = default; 
 
   // Precondition: the function accepts all 'i' greater than 0 
   virtual void f( int i ) const 
   { 
      assert( i > 0 ); 
      // ... 
   } 
}; 
 
struct Y : public X 
{ 
   // Precondition: the function accepts all 'i' greater than 10. 
   // This would strengthen the precondition; numbers between 1 and 10 
   // would no longer be allowed. This is a LSP violation! 
   void f( int i ) const override 
   { 
      assert( i > 10 ); 
      // ... 
   } 
};
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Postconditions cannot be weakened in a subtype: a subtype cannot
promise less when leaving a function than the super type promises.
Again, that would violate the expectations in the abstraction:

struct X 
{ 
   virtual ~X() = default; 
 
   // Postcondition: the function will only return values larger than 0 
   virtual int f() const 
   { 
      int i; 
      // ... 
      assert( i > 0 ); 
      return i; 
   } 
}; 
 
struct Y : public X 
{ 
   // Postcondition: the function may return any value. 
   // This would weaken the postcondition; negative numbers and 0 would 
   // be allowed. This is a LSP violation! 
   int f( int i ) const override 
   { 
      int i; 
      // ... 
      return i; 
   } 
};

Function return types in a subtype must be covariant: member
functions of the subtype can return a type that is itself a subtype of the
return type of the corresponding member function in the super type.
This property has direct language support in C++. However, the
subtype cannot return any super type of the return type of the
corresponding function in the super type:

struct Base { /*...some virtual functions, including destructor...*/ }; 
struct Derived : public Base { /*...*/ }; 
 
struct X 
{ 



   virtual ~X() = default; 
   virtual Base* f(); 
}; 
 
struct Y : public X 
{ 
   Derived* f() override;  // Covariant return type 
};

Function parameters in a subtype must be contravariant: in a member
function, the subtype can accept a super type of the function parameter
in the corresponding member function of the super type. This property
does not have direct language support in C++:

struct Base { /*...some virtual functions, including destructor...*/ }; 
struct Derived : public Base { /*...*/ }; 
 
struct X 
{ 
   virtual ~X() = default; 
   virtual void f( Derived* ); 
}; 
 
struct Y : public X 
{ 
   void f( Base* ) override;  // Contravariant function parameter; Not 
                              // supported in C++. Therefore the function 
                              // does not override, but fails to compile. 
};

Invariants of the super type must be preserved in a subtype: any
expectation about the state of a super type must always be valid before
and after all calls to any member function, including the member
functions of the subtype:

struct X 
{ 
   explicit X( int v = 1 ) 
      : value_(v) 
   { 
      if( v < 1 || v > 10 ) throw std::invalid_argument( /*...*/ ); 
   } 
 



   virtual ~X() = default; 
 
   int get() const { return value_; } 
 
 protected: 
   int value_;  // Invariant: must be within the range [1..10] 
}; 
 
struct Y : public X 
{ 
 public: 
   Y() 
      : X() 
   { 
      value_ = 11;  // Broken invariant: After the constructor, 'value_' 
                    // is out of expected range. One good reason to 
                    // properly encapsulate invariants and to follow 
                    // Core Guideline C.133: Avoid protected data. 
   } 
};

In our example, the expectation in a Rectangle is that we can change the
two side lengths independently, or, more formally, that the result of
getWidth() does not change after setHeight() is called. This expectation
is intuitive for any kind of rectangle. However, the Square class itself
introduces the invariant that all sides must always be equal, or else the
Square would not properly express our idea of a square. But by protecting
its own invariants, the Square unfortunately violates the expectations in the
base class. Thus, the Square class doesn’t fulfill the expectations in the
Rectangle class, and the hierarchy in this example doesn’t express an IS-A
relationship. Therefore, a Square cannot be used in all the places a
Rectangle is expected.

“But isn’t a square a rectangle?” you ask. “Isn’t that properly expressing the
geometrical relation?”  Yes, there may be a geometrical relation between
squares and rectangles, but in this example the inheritance relationship is
broken. This example demonstrates that the mathematical IS-A relationship
is indeed different from the LSP IS-A relationship. While in geometry a
square is always a rectangle, in computer science it really depends on the
actual interface and thus the expectations. As long as there are the two
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independent setWidth() and setHeight() functions, a Square will
always violate the expectations. “I understand,” you say. “Nobody would
claim that, geometrically, a square is still a square after changing its width,
right?” Exactly.

The example also demonstrates that inheritance is not a natural or intuitive
feature, but a hard feature. As stated in the beginning, building abstractions
is hard. Whenever you use inheritance, you must make sure that all
expectations in the base class are fulfilled and that the derived type behaves
as expected.

Criticism of the Liskov Substitution Principle
Some people argue that the LSP, as explained earlier, is in fact not what is
described in the conference paper “Data Abstraction and Hierarchy” by
Barbara Liskov and that the notion of subtyping is flawed. And that is
correct: we usually do not substitute derived objects for base objects, but we
use a derived object as a base object. However, this literal and strict
interpretation of Liskov’s statements does not play any role in the kinds of
abstractions that we build on a daily basis. In their 1994 paper “A
Behavioral Notion of Subtyping,” Barbara Liskov and Jeannette Wing
proposed the term behavioral subtyping, which is the common
understanding of the LSP today.

Other people argue that because of potential violations of the LSP, a base
class does not serve the purpose of an abstraction. The rationale is that
using code would also depend on the (mis-)behavior of derived types. This
argument unfortunately turns the world upside down. A base class does
represent an abstraction, because calling code can and should only and
exclusively depend on the expected behavior of this abstraction. It’s that
dependency that makes LSP violations programming errors. Unfortunately,
sometimes people try to fix LSP violations by introducing special
workarounds:

class Base { /*...*/ }; 
class Derived : public Base { /*...*/ }; 



class Special : public Base { /*...*/ }; 
// ... Potentially more derived classes 
 
void f( Base const& b ) 
{ 
   if( dynamic_cast<Special const*>(&b) ) 
   { 
      // ... do something "special," knowing that 'Special' behaves 
differently 
   } 
   else 
   { 
      // ... do the expected thing 
   } 
}

This kind of workaround will indeed introduce a dependency in the
behavior of the derived types. And a very unfortunate dependency, indeed!
This should always be considered an LSP violation and very bad practice.
It doesn’t serve as a general argument against the abstracting properties of a
base class.

The Need for Good and Meaningful Abstractions
To properly decouple software entities, it is fundamentally important that
we can count on our abstractions. Without meaningful abstractions that we,
the human readers of code, fully understand, we cannot write robust and
reliable software. Therefore, adherence to the LSP is essential for the
purpose of software design. However, a vital part is also the clear and
unambiguous communication of the expectations of an abstraction. In the
best case, this happens by means of software itself (self-documenting code),
but it also entails a proper documentation of abstractions. As a good
example, I recommend the iterator concepts documentation in the C++
standard, which clearly lists the expected behavior, including pre- and post-
conditions.
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GUIDELINE 6: ADHERE TO THE EXPECTED BEHAVIOR
OF ABSTRACTIONS

Understand that an abstraction represents a set of requirements and
expectations.

Follow the Liskov Substitution Principle (LSP) to adhere to the
expected behavior of abstractions.

Make sure that derived classes adhere to the expected behavior of
their base classes.

Communicate the expectations of an abstraction.

Guideline 7: Understand the Similarities
Between Base Classes and Concepts
In “Guideline 6: Adhere to the Expected Behavior of Abstractions”, I may
have created the impression that the LSP is concerned only with inheritance
hierarchies and base classes. To make sure that this impression doesn’t
stick, allow me to explicitly state that the LSP is not limited to dynamic
(runtime) polymorphism and inheritance hierarchies. On the contrary, we
can apply the LSP just as well to static (compile-time) polymorphism and
templated code.

To make the point, let me ask you a question: what’s the difference between
the following two code snippets?

//==== Code Snippet 1 ==== 
 
class Document 
{ 
 public: 
   // ... 
   virtual ~Document() = default; 
 



   virtual void exportToJSON( /*...*/ ) const = 0; 
   virtual void serialize( ByteStream&, /*...*/ ) const = 0; 
   // ... 
}; 
 
void useDocument( Document const& doc ) 
{ 
   // ... 
   doc.exportToJSON( /*...*/ ); 
   // ... 
} 
 
 
//==== Code Snippet 2 ==== 
 
template< typename T > 
concept Document = 
   requires( T t, ByteStream b ) { 
      t.exportToJSON( /*...*/ ); 
      t.serialize( b, /*...*/ ); 
   }; 
 
template< Document T > 
void useDocument( T const& doc ) 
{ 
   // ... 
   doc.exportToJSON( /*...*/ ); 
   // ... 
}

I’m pretty sure your first answer is that the first code snippet shows a
solution using dynamic polymorphism, and the second one shows static
polymorphism. Yes, great! What else? OK, yes, of course, the syntax is
different, too. OK, I see, I should ask my question a little more precisely: in
which way do these two solutions differ semantically?

Well, if you think about it, then you might find that from a semantic point
of view the two solutions are very similar indeed. In the first code snippet,
the useDocument() function works only with classes derived from the
Document base class. Thus, we can say that the function works only with
classes adhering to the expectations of the Document abstraction. In the
second code snippet, the use Docu ment() function works only with classes



that implement the Document concept. In other words, the function works
only with classes adhering to the expectations of the Document abstraction.

If you now have the feeling of déjà vu, then my choice of words hopefully
struck a chord. Yes, in both code snippets, the useDocument() function
works only with classes adhering to the expectations of the Document
abstraction. So despite the fact that the first code snippet is based on a
runtime abstraction and the second function represents a compile-time
abstraction, these two functions are very similar from a semantic point of
view.

Both the base class and the concept represent a set of requirements
(syntactic requirements, but also semantic requirements). As such, both
represent a formal description of the expected behavior and thus are the
means to express and communicate expectations for calling code. Thus,
concepts can be considered the equivalent, the static counterpart, of base
classes. And from this point of view, it makes perfect sense to also consider
the LSP for template code.

“I’m not buying that,” you say. “I’ve heard that C++20 concepts cannot
express semantics!”  Well, to this I can only respond with a definitive yes
and no. Yes, C++20 concepts cannot fully express semantics, that’s correct.
But on the other hand, concepts still express expected behavior. Consider,
for instance, the C++20 form of the std::copy() algorithm:

template< typename InputIt, typename OutputIt > 
constexpr OutputIt copy( InputIt first, InputIt last, OutputIt d_first ) 
{ 
   while( first != last ) { 
      *d_first++ = *first++; 
   } 
   return d_first; 
}

The std::copy() algorithm expects three arguments. The first two
arguments represent the range of elements that need to be copied (the input
range). The third argument represents the first element we need to copy to
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(the output range). A general expectation is that the output range is big
enough that all the elements from the input range can be copied to it.

There are more expectations that are implicitly expressed via the names for
the iterator types: InputIt and OutputIt. InputIt represents a type of
input iterator. The C++ standard states all the expectations of such iterator
types, such as the availability of an (in-)equality comparison, the ability to
traverse a range with a prefix and postfix increment (operator++() and
operator++(int)), and the ability to access elements with the dereference
operator (operator*()). OutputIt, on the other hand, represents a type of
output iterator. Here, the C++ standard also explicitly states all expected
operations.

InputIt and OutputIt may not be C++20 concepts, but they represent the
same idea: these named template parameters don’t just give you an idea
about what kind of type is required; they also express expected behavior.
For instance, we expect that subsequent increments of first will
eventually yield last. If any given concrete iterator type does not behave
this way, std::copy() will not work as expected. This would be a
violation of the expected behavior, and as such, a violation of the LSP.
Therefore, both InputIt and OutputIt represent LSP abstractions.

Note that since concepts represent an LSP abstraction, i.e., a set of
requirements and expectations, they are subject to the Interface Segregation
Principle (ISP) as well (see “Guideline 3: Separate Interfaces to Avoid
Artificial Coupling”). Just as you should separate concerns in the definition
of requirements in the form of base classes (say, “interface” classes), you
should separate concerns when defining a concept. The Standard Library
iterators do that by building on one another, thus allowing you to select the
desired level of requirements:

template< typename I > 
concept input_or_output_iterator = 
  /* ... */; 
 
template< typename I > 
concept input_iterator = 
   std::input_or_output_iterator<I> && 
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   /* ... */; 
 
template< typename I > 
concept forward_iterator = 
   std::input_iterator<I> && 
   /* ... */;

Since both named template parameters and C++20 concepts serve the same
purpose and since both represent LSP abstractions, from now on, in all
subsequent guidelines, I will use the term concept to refer to both of them.
Thus, with the term concept, I will refer to any way to represent a set of
requirements (in most cases for template arguments, but sometimes even
more generally). If I want to refer to either of these two specifically, I will
make it explicitly clear.

In summary, any kind of abstraction (dynamic and static) represents a set of
requirements with that expected behavior. These expectations need to be
fulfilled by concrete implementations. Thus, the LSP clearly represents
essential guidance for all kinds of IS-A relationships.

GUIDELINE 7: UNDERSTAND THE SIMILARITIES
BETWEEN BASE CLASSES AND CONCEPTS

Apply the Liskov Substitution Principle (LSP) to both dynamic
and static polymorphism.

Consider concepts (both the C++20 feature and pre-C++20 named
template arguments) as the static equivalent of base classes.

Adhere to the expected behavior of concepts when using
templates.

Communicate the expectations of a concept (in particular for pre-
C++20 named template arguments).



Guideline 8: Understand the Semantic
Requirements of Overload Sets
In “Guideline 6: Adhere to the Expected Behavior of Abstractions”, I
introduced you to the LSP and hopefully made a strong argument: every
abstraction represents a set of semantic requirements! In other words, an
abstraction expresses expected behavior, which needs to be fulfilled.
Otherwise, you (very likely) will have a problem. In “Guideline 7:
Understand the Similarities Between Base Classes and Concepts”, I
extended the LSP discussion to concepts and demonstrated that the LSP can
and should also be applied to static abstractions.

That’s not the end of the story, though. As stated before: every abstraction
represents a set of requirements. There is one more kind of abstraction that
we have not yet taken into account, one that’s unfortunately often
overlooked, despite its power, and hence one that we should not forget in
the discussion: function overloading. “Function overloading? You mean the
fact that a class can have several functions with the same name?” Yes,
absolutely. You probably have experienced that this is indeed a pretty
powerful feature. Think, for instance, about the two overloads of the
begin() member function inside the std::vector: depending on whether
you have a const or a non-const vector, the corresponding overload is
picked. Without you even noticing. Pretty powerful! But honestly, this isn’t
really much of an abstraction. While it’s convenient and helpful to overload
member functions, I have a different kind of function overloading in mind,
the kind that truly represents a form of abstraction: free functions.

The Power of Free Functions: A Compile-Time
Abstraction Mechanism
Next to concepts, function overloading by means of free functions
represents a second compile-time abstraction: based on some given types,
the compiler figures out which function to call from a set of identically
named functions. This is what we call an overload set. This is an extremely
versatile and powerful abstraction mechanism with many, many great



design characteristics. First of all, you can add a free function to any type:
you can add one to an int, to std::string, and to any other type.
Nonintrusively. Try that with a member function, and you will realize that
this just does not work. Adding a member function is intrusive. You can’t
add anything to a type that cannot have a member function or to a type that
you cannot modify. Thus, a free function perfectly lives up to the spirit of
the Open-Closed Principle (OCP): you can extend the functionality by
simply adding code, without the need to modify already existing code.

This gives you a significant design advantage. Consider, for instance, the
following code example:

template< typename Range > 
void traverseRange( Range const& range ) 
{ 
   for( auto pos=range.begin(); pos!=range.end(); ++pos ) { 
      // ... 
   } 
}

The traverseRange() function performs a traditional, iterator-based loop
over the given range. To acquire iterators, it calls the begin() and end()
member functions on the range. While this code will work for a large
number of container types, it will not work for a built-in array:

#include <cstdlib> 
 
int main() 
{ 
   int array[6] = { 4, 8, 15, 16, 23, 42 }; 
 
   traverseRange( array );  // Compilation error! 
 
   return EXIT_SUCCESS; 
}

This code will not compile, as the compiler will complain about the missing
begin() and end() member functions for the given array type. “Isn’t that
why we should avoid using built-in arrays and use std::array instead?” I



completely agree: you should use std::array instead. This is also very
nicely explained by Core Guideline SL.con.1:

Prefer using STL array or vector instead of a C array.

However, while this is good practice, let’s not lose sight of the design issues
of the traverseRange() function: traverseRange() is restricting itself by
depending on the begin() and end() member functions. Thus, it creates an
artificial requirement on the Range type to support a member begin() and
a member end() function and, by that, limits its own applicability. There is
a simple solution, however, a simple way to make the function much more
widely applicable: build on the overload set of free begin() and end()
functions:

template< typename Range > 
void traverseRange( Range const& range ) 
{ 
   using std::begin;  // using declarations for the purpose of calling 
   using std::end;    //   'begin()' and 'end()' unqualified to enable ADL 
 
   for( auto pos=begin(range); pos!=end(range); ++pos ) { 
      // ... 
   } 
}

This function is still doing the same thing as before, but in this form it
doesn’t restrict itself by any artificial requirement. And indeed, there is no
restriction: any type can have a free begin() and end() function or, if it is
missing, can be equipped with one. Nonintrusively. Thus, this function
works with any kind of Range and doesn’t have to be modified or
overloaded if some type does not meet the requirement. It is more widely
applicable. It is truly generic.

Free functions have more advantages, though. As already discussed in
“Guideline 4: Design for Testability”, free functions are a very elegant
technique to separate concerns, fulfilling the Single-Responsibility
Principle (SRP). By implementing an operation outside a class, you
automatically reduce the dependencies of that class to the operation.
Technically, this becomes immediately clear, since in contrast to member
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functions, free functions don’t have an implicit first argument, the this
pointer. At the same time, this promotes the function to become a separate,
isolated service, which can be used by many other classes as well. Thus,
you promote reuse and reduce duplication. This very, very nicely adheres to
the idea of the Don’t Repeat Yourself (DRY) principle.

The beauty of this is wonderfully demonstrated in Alexander Stepanov’s
brainchild, the Standard Template Library (STL).  One part of the STL
philosophy is to loosely couple the different pieces of functionality and
promote reuse by separating concerns as free functions. That’s why
containers and algorithms are two separate concepts within the STL:
conceptually, containers don’t know about the algorithms, and algorithms
don’t know about containers. The abstraction between them is
accomplished via iterators that allow you to combine the two in seemingly
endless ways. A truly remarkable design. Or to say it in the words of Scott
Meyers:

There was never any question that the [standard template] library
represented a breakthrough in efficient and extensible design.

“But what about std::string? std::string comes with dozens of
member functions, including many algorithms.” You’re making a good
point, but more in the sense of a counter example. Today the community
agrees that the design of std::string is not great. Its design promotes
coupling, duplication, and growth: in every new C++ standard, there are a
couple of new, additional member functions. And growth means
modifications and subsequently the risk of accidentally changing
something. This is a risk that you want to avoid in your design. However, in
its defense, std::string was not part of the original STL. It was not
designed alongside the STL containers (std::vector, std::list,
std::set, etc.) and was adapted to the STL design only later. That explains
why it’s different from the other STL containers and does not completely
share their beautiful design goal.
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The Problem of Free Functions: Expectations on the
Behavior
Apparently, free functions are remarkably powerful and seriously important
for generic programming. They play a vital role in the design of the STL
and the design of the C++ Standard Library as a whole, which builds on the
power of this abstraction mechanism.  However, all of this power can only
work if a set of overload functions adheres to a set of rules and certain
expectations. It can only work if it adheres to the LSP.

For instance, let’s imagine that you have written your own Widget type and
want to provide a custom swap() operation for it:

//---- <Widget.h> ---------------- 
 
struct Widget 
{ 
   int i; 
   int j; 
}; 
 
void swap( Widget& w1, Widget& w2 ) 
{ 
   using std::swap; 
   swap( w1.i, w2.i ); 
}

Your Widget only needs to be a simple wrapper for int values, called i and
j. You provide the corresponding swap() function as an accompanying free
function. And you implement swap() by swapping only the i value, not the
j value. Further imagine that your Widget type is used by some other
developer, maybe a kind coworker. At some point, this coworker calls the
swap() function:

#include <Widget.h> 
#include <cstdlib> 
 
int main() 
{ 
   Widget w1{ 1, 11 }; 
   Widget w2{ 2, 22 }; 
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   swap( w1, w2 ); 
 
   // Widget w1 contains (2,11) 
   // Widget w2 contains (1,22) 
 
   return EXIT_SUCCESS; 
}

Can you imagine the surprise of your coworker when after the swap()
operation the content of w1 is not (2,22) but (2,11) instead? How
unexpected is it that only part of the object is swapped? Can you imagine
how frustrated your coworker must be after an hour of debugging? And
what would happen if this wasn’t a kind coworker?

Clearly, the implementation of swap() doesn’t fulfill the expectations of a
swap() function. Clearly, anyone would expect that the entire observable
state of the object is swapped. Clearly, there are behavioral expectations.
Thus, if you buy into an overload set, you’re immediately and inevitably
subject to fulfill the expected behavior of the overload set. In other words,
you have to adhere to the LSP.

“I see the problem, I get that. I promise to adhere to the LSP,” you say.
That’s great, and this is an honorable intention. The problem is that it might
not always be entirely clear what the expected behavior is, especially for an
overload set that is scattered across a big codebase. You might not know
about all the expectations and all the details. Thus sometimes, even if
you’re aware of this problem and pay attention, you might still not do the
“right” thing. This is what several people in the community are worried
about: the unrestricted ability to add potentially LSP-violating functionality
into an overload set.  And as stated before, it’s easy to do. Anyone,
anywhere, can add free functions.

As always, every approach and every solution has advantages, and also
disadvantages. On the one hand, it is enormously beneficial to exploit the
power of overload sets, but on the other hand, it is potentially very difficult
to do the right thing. These two sides of the same coin are also expressed by
Core Guideline C.162 and Core Guideline C.163:
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Overload operations that are roughly equivalent.
—Core Guideline C.162

Overload only for operations that are roughly equivalent.
—Core Guideline C.163

Whereas C.162 expresses the advantages of having the same name for
semantically equivalent functions, C.163 expresses the problem of having
the same name for semantically different functions. Every C++ developer
should be aware of the tension between these two guidelines. Additionally,
to adhere to the expected behavior, every C++ developer is well advised to
be aware of existing overload sets (std::swap(), std::begin(),
std::cbegin(), std::end(), std::cend(), std::data(), std::size(),
etc.) and to know about common naming conventions. For instance, the
name find() should be used only for a function that performs a linear
search over a range of elements. For any function that performs a binary
search, the name find() would raise the wrong expectations and would not
communicate the precondition that the range needs to be sorted. And then,
of course, the names begin() and end() should always fulfill the
expectation to return a pair of iterators that can be used to traverse a range.
They should not start or end some kind of process. This task would be
better performed by a start() and a stop() function.

“Well, I agree with all these points,” you say. “However, I’m primarily
using virtual functions, and since these cannot be implemented in terms of
free functions, I can’t really use all of this advice on overload sets, right?” It
may surprise you, but this advice still applies to you. Since the ultimate goal
is to reduce dependencies, and since virtual functions may cause quite a
significant amount of coupling, one of the goals will be to “free” these, too.
In fact, in many of the subsequent guidelines, and perhaps most
prominently in “Guideline 19: Use Strategy to Isolate How Things Are
Done” and “Guideline 31: Use External Polymorphism for Nonintrusive
Runtime Polymorphism”, I will tell the story of how to extract and separate
virtual functions in the form of, but not limited to, free functions.
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In summary, function overloading is a powerful compile-time abstraction
mechanism that you should not underestimate. In particular, generic
programming heavily exploits this power. However, don’t take this power
too lightly: remember that just as with base classes and concepts, an
overload set represents a set of semantic requirements and thus is subject to
the LSP. The expected behavior of an overload set must be adhered to, or
things will not work well.

GUIDELINE 8: UNDERSTAND THE SEMANTIC
REQUIREMENTS OF OVERLOAD SETS

Be aware that function overloading is a compile-time abstraction
mechanism.

Keep in mind that there are expectations on the behavior of
functions within an overload set.

Pay attention to existing names and conventions.

Guideline 9: Pay Attention to the Ownership
of Abstractions
As stated in “Guideline 2: Design for Change”, change is the one constant
in software development. Your software should be prepared for change.
One of the essential ingredients for dealing with change is the introduction
of abstractions (see also “Guideline 6: Adhere to the Expected Behavior of
Abstractions”). Abstractions help reduce dependencies and thus make it
easier to change details in isolation. However, there is more to introducing
abstractions than just adding base classes or templates.

The Dependency Inversion Principle
The need for abstractions is also expressed by Robert Martin:16



The most flexible systems are those in which source code dependencies
refer only to abstractions, not to concretions.

This piece of wisdom is commonly known as the Dependency Inversion
Principle (DIP), which is the fifth of the SOLID principles. Simply stated, it
advises that for the sake of dependencies, you should depend on
abstractions instead of concrete types or implementation details. Note that
this statement doesn’t say anything about inheritance hierarchies but only
mentions abstractions in general.

Let’s take a look at the situation illustrated in Figure 2-1.  Imagine you are
implementing the logic for an automated teller machine (ATM). An ATM
provides several kinds of operations: you can withdraw money, deposit
money, and transfer money. Since all of these operations deal with real
money, they should either run to full completion or, in case of any kind of
error, be aborted and all changes rolled back. This kind of behavior (either
100% success or a complete rollback) is what we commonly call a
transaction. Consequently, we can introduce an abstraction named
Transaction. All abstractions (Deposit, Withdrawal, and Transfer)
inherit from the Transaction class (depicted by the UML inheritance
arrow).

17





Figure 2-1. Initial strong dependency relationship between several transactions and a UI

All transactions are in need of input data entered by a bank customer via the
user interface. This user interface is provided by the UI class, which
provides many different functions to query for the entered data:
requestDepositAmount(), request WithdrawalAmount(),
requestTransferAmount(), informInsufficientFunds(), and
potentially more functions. All three abstractions directly call these
functions whenever they need information. This relationship is depicted by
the little solid arrow, which indicates that the abstractions depend on the UI
class.

While this setup may work for some time, your trained eye might have
already spotted a potential problem: what happens if something changes?
For instance, what happens if a new transaction is added to the system?

Let’s assume that we must add a SpeedTransfer transaction for VIP
customers. This might require us to change and extend the UI class with a
couple of new functions (for instance, requestSpeedTransferAmount()
and requestVIPNumber()). That, in turn, also affects all of the other
transactions, since they directly depend on the UI class. In the best case,
these transactions simply have to be recompiled and retested (still, this
takes time!); in the worst case, they might have to be redeployed in case
they are delivered in separate shared libraries.

The underlying reason for all of that extra effort is a broken architecture. All
transactions indirectly depend on one another via the concrete dependency
on the UI class. And that is a very unfortunate situation from an
architectural point of view: the transaction classes reside at the high level of
our architecture, while the UI class resides at the low level. In this example,
the high level depends on the low level. And that is just wrong: in a proper
architecture, this dependency should be inverted.

All transactions indirectly depend on one another due to the dependency on
the UI class. Furthermore, the high level of our architecture depends on the
low level. This is a pretty unfortunate situation indeed, a situation that we
should resolve properly. “But that’s simple!” you say. “We just introduce an
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abstraction!” That’s exactly what Robert Martin expressed in his statement:
we need to introduce an abstraction in order not to depend on the concrete
implementation in the UI class.

However, a single abstraction wouldn’t solve the problem. The three kinds
of transactions would still be indirectly coupled. No, as Figure 2-2
illustrates, we need three abstractions: one for each transaction.19





Figure 2-2. The relaxed dependency relationship between several transactions and a UI

By introducing the DepositUI, WithdrawalUI, and TransferUI classes,
we’ve broken the dependency among the three transactions. The three
transactions are no longer dependent on the concrete UI class, but on a
lightweight abstraction that represents only those operations that the
relevant transaction truly requires. If we now introduce the SpeedTransfer
transaction, we can also introduce the SpeedTransferUI abstraction, so
none of the other transactions will be affected by the changes introduced in
the UI class.

“Oh, yes, I get it! This way we have fulfilled three design principles!” You
sound impressed. “We’ve introduced an abstraction to cut the dependency
on the implementation details of the user interface. That must be the DIP.
And we’ve followed the ISP and removed the dependencies among the
different transactions. And as a bonus, we have also nicely grouped the
things that truly belong together. That’s the SRP, right? That’s amazing!
Let’s celebrate!”

Wait, wait, wait…Before you go off to uncork your best bottle of
champagne to celebrate solving this dependency problem, let’s take a closer
look at the problem. So yes, you are correct, we follow the ISP by
separating the concerns of the UI class. By segregating it into three client-
specific interfaces, we’ve resolved the dependency situation among the
three transactions. This is indeed the ISP. Very nice!

Unfortunately, we haven’t resolved our architectural problem yet, so no, we
do not follow the DIP (yet). But I get the misunderstanding: it does appear
as if we have inverted the dependencies. Figure 2-3 shows that we have
really introduced an inversion of dependencies: instead of depending on the
concrete UI class, we now depend on abstractions.





Figure 2-3. The local inversion of dependencies by introduction of three abstract UI classes

However, what we have introduced is a local inversion of dependencies.
Yes, a local inversion only, not a global inversion. From an architectural
point of view, we still have a dependency from the high level (our
transaction classes) to the low level (our UI functionality). So no, it is not
enough to just introduce an abstraction. It’s also important to consider
where to introduce the abstraction. Robert Martin expressed this with the
following two points:

1. High-level modules should not depend on low-level modules. Both
should depend on abstractions.

2. Abstractions should not depend on details. Details should depend on
abstractions.

The first point clearly expresses an essential property of an architecture: the
high level, i.e., the stable part(s) of our software, should not depend on the
low level, i.e., the implementation details. That dependency should be
inverted, meaning that the low level should depend on the high level.
Luckily, the second point gives us an idea how to achieve that: we assign
the three abstractions to the high level. Figure 2-4 illustrates the
dependencies when we consider abstractions part of the high level.
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Figure 2-4. Inversion of dependencies by assigning the abstractions to the high level

By assigning the abstractions to the high level and by making the high level
the owner of the abstractions, we truly follow the DIP: all arrows now run
from the low level to the high level. Now we do have a proper architecture.

“Wait a second!” You look a little confused. “That’s it? All we need is to
perform a mental shift of the architectural boundary?” Well, it may very
well be more than just a mental shift. This may result in moving the
dependent header files for the UI classes from one module to another and
also completely rearranging the dependent include statements. It’s not just a
mental shift—it is a reassignment of ownership.

“But now we no longer group the things that belong together,” you argue.
“The user interface functionality is now spread across both levels. Isn’t that
a violation of the SRP?” No, it isn’t. On the contrary, only after assigning
the abstractions to the high level do we now properly follow the SRP. It’s
not the UI classes that belong together; it’s the transaction classes and the
dependent UI abstractions that should be grouped together. Only in this way
can we steer the dependency in the right direction; only in this way do we
have an architecture. Thus, for a proper dependency inversion, the
abstraction must be owned by the high level.

Dependency Inversion in a Plug-In Architecture
Perhaps this fact makes more sense if we consider the situation depicted in
Figure 2-5. Imagine you have created the next-generation text editor. The
core of this new text editor is represented by the Editor class on the
lefthand side. To ensure that this text editor will be successful, you want to
make sure that the fan community can participate in the development.
Therefore, one vital ingredient for your success is the ability of the
community to add new functionality in the form of plug-ins. However, the
initial setting is pretty flawed from an architectural point of view and will
hardly satisfy your fan community: the Editor directly depends on the
concrete VimMode Plu gin class. Since the Editor class is part of the high
level of the architecture, which you should consider as your own realm, the



VimMode Plugin is part of the low level of the architecture, which is the
realm of your fan community. Since the Editor directly depends on the
VimMode Plu gin, and because that essentially means that your community
can define their interfaces as they please, you would have to change the
editor for every new plug-in. As much as you love to work on your
brainchild, there’s only so much time you can devote to adapting to
different kinds of plug-ins. Unfortunately, your fan community will soon be
disappointed and move on to another text editor.

Figure 2-5. Broken plug-in architecture: the high-level Editor class depends on the low-level
VimModePlugin class

Of course, that shouldn’t happen. In the given Editor example, it certainly
isn’t a good idea to make the Editor class depend on all the concrete plug-
ins. Instead, you should reach for an abstraction, for instance, in the form of
a Plugin base class. The Plugin class now represents the abstraction for all



kinds of plug-ins. However, it doesn’t make sense to introduce the
abstraction in the low level of the architecture (see Figure 2-6). Your
Editor would still depend on the whims of your fan community.

Figure 2-6. Broken plug-in architecture: the high-level Editor class depends on the low-level
Plugin class

This misdirected dependency also becomes apparent when looking at the
source code:

//---- <thirdparty/Plugin.h> ---------------- 
 
class Plugin { /*...*/ };  // Defines the requirements for plugins 
 
 
//---- <thirdparty/VimModePlugin.h> ---------------- 
 
#include <thirdparty/Plugin.h> 



 
class VimModePlugin : public Plugin { /*...*/ }; 
 
 
//---- <yourcode/Editor.h> ---------------- 
 
#include <thirdparty/Plugin.h>  // Wrong direction of dependencies! 
 
class Editor { /*...*/ };

The only way to build a proper plug-in architecture is to assign the
abstraction to the high level. The abstraction must belong to you, not to your
fan community. Figure 2-7 demonstrates that this resolves the architectural
dependency and frees your Editor class from the dependencies on plug-ins.
This resolves both the DIP, because the dependency is properly inverted,
and the SRP, because the abstraction belongs to the high level.



Figure 2-7. Correct plug-in architecture: the low-level VimModePlugin class depends on the high-
level Plugin class

A look at the source code reveals that the direction of dependencies has
been fixed: the VimModePlugin depends on your code, and not vice versa:

//---- <yourcode/Plugin.h> ---------------- 
 
class Plugin { /*...*/ };  // Defines the requirements for plugins 
 
 
//---- <yourcode/Editor.h> ---------------- 
 
#include <yourcode/Plugin.h> 
 
class Editor { /*...*/ }; 
 
 
//---- <thirdparty/VimModePlugin.h> ---------------- 



 
#include <yourcode/Plugin.h>  // Correct direction of dependencies 
 
class VimModePlugin : public Plugin { /*...*/ };

Again, to get a proper dependency inversion, the abstraction must be owned
by the high level. In this context, the Plugin class represents the set of
requirements that needs to be fulfilled by all plug-ins (see again “Guideline
6: Adhere to the Expected Behavior of Abstractions”). The Editor defines
and thus owns these requirements. It doesn’t depend on them. Instead, the
different plug-ins depend on the requirements. That is dependency
inversion. Hence, the DIP is not just about the introduction of an abstraction
but also about the ownership of that abstraction.

Dependency Inversion via Templates
So far I might have given you the impression that the DIP is concerned with
only inheritance hierarchies and base classes. However, dependency
inversion is also achieved with templates. In that context, however, the
question of ownership is resolved automatically. As an example, let’s
consider the std::copy_if() algorithm:

template< typename InputIt, typename OutputIt, typename UnaryPredicate > 
OutputIt copy_if( InputIt first, InputIt last, OutputIt d_first, 
                  UnaryPredicate pred );

This copy_if() algorithm also adheres to the DIP. The dependency
inversion is achieved with the concepts InputIt, OutputIt, and
UnaryPredicate. These three concepts represent the requirements on the
passed iterators and predicates that need to be fulfilled by calling code. By
specifying these requirements through concepts, i.e., by owning these
concepts, std::copy_if() makes other code depend on itself and does not
itself depend on other code. This dependency structure is depicted in
Figure 2-8: both containers and predicates depend on the requirements
expressed by the corresponding algorithm. Thus, if we consider the
architecture within the Standard Library, then std::copy_if() is part of



the high level of the architecture, and containers and predicates (function
objects, lambdas, etc.) are part of the low level of the architecture.

Figure 2-8. Dependency structure of the STL algorithms

Dependency Inversion via Overload Sets
Inheritance hierarchies and concepts are not the only means to invert
dependencies. Any kind of abstraction is able to do so. Therefore, it
shouldn’t come as a surprise that overload sets also enable you to follow the
DIP. As you have seen in “Guideline 8: Understand the Semantic
Requirements of Overload Sets”, overload sets represent an abstraction and,
as such, a set of semantic requirements and expectations. In comparison to
base classes and concepts, though, there is unfortunately no code that
explicitly describes the requirements. But if these requirements are owned
by a higher level in your architecture, you can achieve dependency
inversion. Consider, for instance, the following Widget class template:

//---- <Widget.h> ---------------- 
 



#include <utility> 
 
template< typename T > 
struct Widget 
{ 
   T value; 
}; 
 
template< typename T > 
void swap( Widget<T>& lhs, Widget<T>& rhs ) 
{ 
   using std::swap; 
   swap( lhs.value, rhs.value ); 
}

Widget owns a data member of an unknown type T. Despite the fact that T
is unknown, it is possible to implement a custom swap() function for
Widget by building on the semantic expectations of the swap() function.
This implementation works, as long as the swap() function for T adheres to
all expectations for swap() and follows the LSP:

#include <Widget.h> 
#include <assert> 
#include <cstdlib> 
#include <string> 
 
int main() 
{ 
   Widget<std::string> w1{ "Hello" }; 
   Widget<std::string> w2{ "World" }; 
 
   swap( w1, w2 ); 
 
   assert( w1.value == "World" ); 
   assert( w2.value == "Hello" ); 
 
   return EXIT_SUCCESS; 
}

In consequence, the Widget swap() function itself follows the expectations
and adds to the overload set, similar to what a derived class would do. The
dependency structure for the swap() overload set is shown in Figure 2-9.
Since the requirements, or the expectations, for the overload set are part of
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the high level of the architecture, and since any implementation of swap()
depends on these expectations, the dependency runs from the low level
toward the high level. The dependency is therefore properly inverted.

Figure 2-9. Dependency structure of the swap() overload set

Dependency Inversion Principle Versus Single-
Responsibility Principle
As we have seen, the DIP is fulfilled by properly assigning ownership and
by properly grouping the things that truly belong. From that perspective, it
sounds plausible to consider the DIP as just another special case of the SRP
(similar to the ISP). However, hopefully you see that the DIP is more than
that. As the DIP, in contrast to the SRP, is very much concerned with the
architectural point of view, I consider it a vital piece of advice to build
proper global dependency structures.

To summarize, in order to build a proper architecture with a proper
dependency structure, it’s essential to pay attention to the ownership of
abstractions. Since abstractions represent requirements on the



implementations, they should be part of the high level to steer all
dependencies toward the high level.

GUIDELINE 9: PAY ATTENTION TO THE OWNERSHIP
OF ABSTRACTIONS

Keep in mind that in a proper architecture, low-level
implementation details depend on high-level abstractions.

Adhere to the Dependency Inversion Principle (DIP), and assign
abstractions to the high level of an architecture.

Make sure abstractions are owned by the high level, not by the low
level.

Guideline 10: Consider Creating an
Architectural Document
Let’s chat a little about your architecture. Let me start with a very simple
question: do you have an architectural document? Any plan or description
that summarizes the major points and fundamental decisions of your
architecture and that shows the high levels, the low levels, and the
dependencies between them? If your answer is yes, then you’re free to skip
this guideline and continue with the next one. If your answer is no,
however, then let me ask a few follow-up questions. Do you have a
Continuous Integration (CI) environment? Do you use automated tests? Do
you apply static code analysis tools? All yes? Good, there’s still hope. The
only remaining question is: why don’t you have an architectural document?

“Oh, come on, don’t turn a mosquito into an elephant. A missing
architectural document is not the end of the world! After all, we are Agile,
we can change things quickly!” Imagine my completely blank expression,
followed by a long sigh. Well, honestly, I was afraid this would be your
explanation. It’s unfortunately what I hear far too often. There may be a



misunderstanding: the ability to quickly change things is not the point of an
Agile methodology. Sadly, I also have to tell you that your answer doesn’t
make any sense. You could just as well have answered with “After all, we
like chocolate!” or “After all, we wear carrots around our necks!” To
explain what I mean, I will quickly summarize the point of the Agile
methodology and then subsequently explain why you should invest in an
architectural document.

The expectation that Agile methods help to change things quickly is pretty
widespread. However, as several authors in the recent past have clarified,
the major, and probably only, point of the Agile methodology is to get quick
feedback.  In Agile methods, the entire software development process is
built around it: quick feedback due to business practices (such as planning,
small releases, and acceptance tests), quick feedback due to team practices
(e.g., collective ownership, CI, and stand-up meetings), and quick feedback
due to technical practices (such as test-driven development, refactoring, and
pair programming). However, contrary to popular belief, the quick feedback
does not mean that you can change your software quickly and easily.
Though quick feedback is, of course, key to quickly knowing that
something has to be done, you gain the ability to quickly change your
software only with good software design and architecture. These two save
you the Herculean effort to change things; quick feedback only tells you
something is broken.

“OK, you’re right. I get your point—it is important to pay attention to good
software design and architecture. But what’s the point of an architectural
document?” I’m glad we agree. And that is an excellent question. I see we
are making progress. To explain the purpose of an architectural document,
let me give you another definition of architecture:

In most successful software projects, the expert developers working on
that project have a shared understanding of the system design. This
shared understanding is called ‘architecture.’

—Ralph Johnson
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Ralph Johnson describes architecture as the shared understanding of a
codebase—the global vision. Let’s assume that there is no architectural
document, nothing that summarizes the global picture—the global vision of
your codebase. Let’s also assume that you believe you have a very clear
idea of the architecture of your codebase. Then here are a few more
questions: how many developers are on your team? Are you certain that all
of these developers are familiar with the architecture in your head? Are you
certain that all of them share the same vision? Are you certain that they all
help you move forward in the same direction?

If your answers are yes, then you might not have gotten the point yet. It is
fairly certain that every developer has different experiences and a slightly
different terminology. It is also fairly certain that every developer sees the
code differently and has a slightly different idea of the current architecture.
And this slightly different view of the current state of affairs may lead to a
slightly different vision for the future. While this might not be immediately
evident over a short period of time, there is a good chance that surprises
will happen in the long run. Misunderstandings. Misinterpretations. This is
exactly the point of an architectural document: one common document that
unifies the ideas, visions, and essential decisions in one place; helps
maintain and communicate the state of the architecture; and helps avoid any
misunderstandings.

This document also preserves ideas, visions, and decisions. Imagine that
one of your leading software architects, one of the brains behind the
architecture of your codebase, leaves the organization. Without a document
with the fundamental decisions, this loss of manpower will also cause a loss
of essential information about your codebase. As a consequence, you will
lose consistency in the vision of your architecture and also, more
importantly, some confidence to adapt or change architectural decisions. No
new hire will ever be able to replace that knowledge and experience, and no
one will be able to extract all that information from the code. Thus, the code
will become more rigid, more “legacy.” This promotes decisions to rewrite
large parts of the code, with questionable outcomes, as the new code will



initially lack a lot of the wisdom of the old code.  Thus, without an
architectural document, your long-term success is at stake.

The value in such an architectural document becomes obvious if we take a
look at how seriously architecture is taken at construction sites.
Construction is not even going to start without a plan. A plan that everyone
agrees to. Or let’s imagine what would happen if there was no plan: “Hey, I
said the garage should be to the left of the house!” “But I built it to the left
of the house.” “Yes, but I meant my left, not your left!”

This is exactly the kind of problem that can be avoided by investing time in
an architectural document. “Yes, yes, you’re right,” you admit, “but such a
document is soooo much work. And all of this information is in the code
anyway. It adapts with the code, while the document goes out of date soooo
quickly!” Well, not if you’re doing it properly. An architectural document
shouldn’t go out of date quickly because it should primarily reflect the big
picture of your codebase. It shouldn’t contain the little details that indeed
can change very often; instead, it should contain the overall structure, the
connections between key players, and the major technological decisions. All
these things are not expected to change (although we all agree that “not
expected to change” doesn’t mean that they won’t change; after all,
software is expected to change). And yes, you are correct: these details are,
of course, also part of the code. After all, the code contains all the details
and thus can be said to represent the ultimate truth. However, it doesn’t help
if the information is not easy to come by, is hidden from plain sight, and
requires an archaeological effort to extract.

I am also aware that, in the beginning, the endeavor to create an
architectural document does sound like a lot of work. An enormous amount
of work. All I can do is encourage you to get started somehow. Initially, you
do not have to document your architecture in all its glory, but maybe you
start with only the most fundamental structural decisions. Some tools can
already use this information to compare your assumed architectural state
and its actual state.  Over time, more and more architectural information
can be added, documented, and maybe even tested by tools, which leads to
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more and more commonly available, established wisdom for your entire
team.

“But how do I keep this document up to date?” you ask. Of course, you’ll
have to maintain this document, integrate new decisions, update old
decisions, etc. However, since this document should only contain
information about the aspects that do not often change, there should be no
need to constantly touch and refactor it. It should be enough to schedule a
short meeting of the senior developers every one or two weeks to discuss if
and how the architecture has evolved. Thus, it is hard to imagine this
document becoming a bottleneck in the development process. In this regard,
consider this document a bank deposit safe: it is invaluable to have all of
the accumulated decisions of the past when you need them and to keep the
information secure, but you wouldn’t open it every single day.

In summary, the benefits of having an architectural document by far
outweigh the risks and efforts. The architectural document should be
considered an essential part of any project and an integral part of the
maintenance and communication efforts. It should be considered equally
important as a CI environment or automated tests.

GUIDELINE 10: CONSIDER CREATING AN
ARCHITECTURAL DOCUMENT

Understand that an architectural document serves the purpose of
maintaining and communicating the current state of the
architecture.

Use tools to support and help you test the current state of your
architecture against the expected state.

1  In one of my training classes several years ago, I was “gently” reminded that from a
mathematical perspective, a square is not a rectangle but a rhombus. My knees still shake when
I think about that lecture. Therefore, I specifically say “appears to be” instead of “is” to denote
the naive impression that unaware people like me might have had.



2  Not mathematically, but in this implementation.

3  The LSP was first introduced by Barbara Liskov in the paper “Data Abstraction and
Hierarchy” in 1988. In 1994, it was reformulated in the paper “A Behavioral Notion of
Subtyping” by Barbara Liskov and Jeannette Wing. For her work, Barbara Liskov received the
Turing Award in 2008.

4  If you have a strong opinion about a square being a rhombus, please forgive me!

5  And yet, in a sufficiently large codebase, there’s a good chance that you’ll find at least one
example of this kind of malpractice. In my experience, it’s often the result of too little time to
rethink and adapt the abstraction.

6  This is indeed a very often discussed topic. You’ll find a very good summary of this in
foonathan’s blog.

7  In C++20, std::copy() is finally constexpr but does not yet use the
std::input_iterator and std::output_iterator concepts. It is still based on the formal
description of input and output iterators; see LegacyInputIterator and LegacyOutputIterator.

8  And no, it wouldn’t be a compile-time error, unfortunately.

9  The free begin() and end() functions are an example of the Adapter design pattern; see
“Guideline 24: Use Adapters to Standardize Interfaces” for more details.

10  That is why range-based for loops build on the free begin() and end() functions.

11  Alexander Stepanov and Meng Lee, “The Standard Template Library”, October 1995.

12  Scott Meyers, Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template
Library (Addison-Wesley Professional, 2001).

13  Free functions are indeed a seriously valuable design tool. To give one example of this, allow
me to tell a short war story. You might know Martin Fowler’s book Refactoring: Improving the
Design of Existing Code (Addison-Wesley), which may be considered one of the classics for
professional software development. The first edition of the book was published in 2012 and
provided programming examples in Java. The second edition of the book was released in 2018,
but interestingly rewritten with JavaScript. One of the reasons for that choice was the fact that
any language having a C-like syntax was considered easier to digest for a majority of readers.
However, another important reason was the fact that JavaScript, unlike Java, provides free
functions, which Martin Fowler considers a very important tool for decoupling and separating
concerns. Without this feature, you would be limited in your flexibility to achieve the
refactoring goal.

14  A great discussion of this can be found in episode 83 of Cpp.Chat, where Jon Kalb, Phil
Nash, and Dave Abrahams discuss the lessons learned from C++ and how they were applied in
the development of the Swift programming language.

15  As Kate Gregory would say, “Naming Is Hard: Let’s Do Better.” This is the title of her highly
recommended talk from CppCon 2019.

16  Robert C. Martin, Clean Architecture (Addison-Wesley, 2017).

https://oreil.ly/Z9lu1
https://oreil.ly/ic7N3
https://oreil.ly/HiJP9
https://oreil.ly/9vsvC
https://oreil.ly/ZcJeU
https://oreil.ly/vgm61
https://cpp.chat/83
https://oreil.ly/TLuqb


17  This example is taken from Robert Martin’s book Agile Software Development: Principles,
Patterns, and Practices (Prentice Hall, 2002). Martin used this example to explain the Interface
Segregation Principle (ISP), and for that reason, he didn’t go into detail about the question of
ownership of abstractions. I will try to fill this gap.

18  If you argue that the Transaction base class could be on an even higher level, you are
correct. You’ve earned yourself a bonus point! But for the remainder of the example we won’t
need this extra level, and therefore I will ignore it.

19  If you’re wondering about the two informInsufficientFunds() functions: yes, it is
possible to implement both virtual functions (i.e., the one from the WithdrawalUI and the one
from the TransferUI) by means of a single implementation in the UI class. Of course, this
works well only as long as these two functions represent the same expectations and thus can be
implemented as one. However, if they represent different expectations, then you’re facing a
Siamese Twin Problem (see Item 26 in Herb Sutter’s More Exceptional C++: 40 New
Engineering Puzzles, Programming Problems, and Solutions (Addison-Wesley). For our
example, let’s assume that we can deal with these two virtual functions the easy way.

20  Martin, Clean Architecture.

21  I know what you’re thinking. However, it was just a matter of time until you encountered a
“Hello World” example.

22  The point is, for instance, made by Robert C. Martin, one of the signees of the Agile
manifesto, in his book Clean Agile: Back to Basics (Pearson). A second good summary is
given by Bertrand Meyer in Agile! The Good, the Hype and the Ugly (Springer). Finally, you
can also consult the second edition of James Shore’s book The Art of Agile Development
(O’Reilly). A good talk on the misuse of the term Agile is Dave Thomas’s “Agile Is Dead”
presentation from GOTO 2015.

23  Quoted in Martin Fowler, “Who Needs an Architect?” IEEE Software 20, no. 5 (2003), 11–13,
https://doi.org/10.1109/MS.2003.1231144.

24  Joel Spolsky, whom you may know as the author of the Joel on Software blog, and also as one
of the creators of Stack Overflow, named the decision to rewrite a large piece of code from
scratch “the single worst strategic mistake that any company can make”.

25  One possible tool for this purpose is the Axivion Suite. You start by defining architectural
boundaries between your modules, which can be used by the tool to check if the architectural
dependencies are upheld. Another tool with such capabilities is the Sparx Systems Enterprise
Architect.

https://learning.oreilly.com/library/view/the-art-of/9781492080688/
https://oreil.ly/LJZN1
https://doi.org/10.1109/MS.2003.1231144
https://www.joelonsoftware.com/
https://oreil.ly/ndLhY
https://oreil.ly/32kue
https://oreil.ly/1oC3Y


Chapter 3. The Purpose of
Design Patterns

Visitor, Strategy, Decorator. These are all names of design patterns that
we’ll deal with in the upcoming chapters. However, before taking a detailed
look at each of these design patterns, I should give you an idea about the
general purpose of a design pattern. Thus in this chapter, we will first take a
look at the fundamental properties of design patterns, why you would want
to know about them and use them.

In “Guideline 1: Understand the Importance of Software Design”, I already
used the term design pattern and explained on which level of software
development you use them. However, I have not yet explained in detail
what a design pattern is. That will be the topic of “Guideline 11:
Understand the Purpose of Design Patterns”: you will understand that a
design pattern has a name that expresses an intent, introduces an abstraction
that helps to decouple software entities, and has been proven over the years.

In “Guideline 12: Beware of Design Pattern Misconceptions”, I will focus
on several misconceptions about design patterns and explain what a design
pattern is not. I will try to convince you that design patterns are not about
implementation details and do not represent language-specific solutions to
common problems. I will also do my best to show you that they are not
limited to object-oriented programming nor to dynamic polymorphism.

In “Guideline 13: Design Patterns Are Everywhere”, I will demonstrate that
it’s hard to avoid design patterns. They are everywhere! You will realize
that the C++ Standard Library in particular is full of design patterns and
makes good use of their strengths.

In “Guideline 14: Use a Design Pattern’s Name to Communicate Intent”, I
will make the point that part of the strength of a design pattern is the ability
to communicate intent by using its name. Thus I will show you how much



more information and meaning you can add to your code by using the name
of a design pattern.

Guideline 11: Understand the Purpose of
Design Patterns
There’s a good chance that you have heard about design patterns before and
a fairly good chance that you’ve used some of them in your programming
career. Design patterns are nothing new: they have been around at least
since the Gang of Four (GoF) released their book on design patterns in
1994.  And while there are always critics, their special value has been
acknowledged throughout the software industry. Yet, despite the long
existence and importance of design patterns, despite all the knowledge and
accumulated wisdom, there are many misconceptions about them,
especially in the C++ community.

To use design patterns productively, as a first step you need to understand
what design patterns are. A design pattern:

Has a name

Carries an intent

Introduces an abstraction

Has been proven

A Design Pattern Has a Name
First of all, a design pattern has a name. While this sounds very obvious and
necessary, it is indeed a fundamental property of a design pattern. Let’s
assume that the two of us are working on a project together and are tasked
with finding a solution to a problem. Imagine I told you, “I would use a
Visitor for that.”  Not only would this tell you what I understand to be the
real problem, but it would also give you a precise idea about the kind of
solution I’m proposing.
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The name of a design pattern allows us to communicate on a very high level
and to exchange a lot of information with very few words:

ME: I would use a Visitor for that.

YOU: I don’t know. I thought of using a Strategy.

ME: Yes, you may have a point there. But since we’ll have to extend
operations fairly often, we probably should consider a Decorator as well.

By just using the names Visitor, Strategy, and Decorator, we’ve discussed
the evolution of the codebase, and described how we expect things to
change and to be extended in years to come.  Without these names, we
would have a much harder time expressing our ideas:

ME: I think we should create a system that allows us to extend the
operations without the need to modify existing types again and again.

YOU: I don’t know. Rather than new operations, I would expect new
types to be added frequently. So I prefer a solution that allows me to add
types easily. But to reduce coupling to the implementation details, which
is to be expected, I would suggest a way to extract implementation details
from existing types by introducing a variation point.

ME: Yes, you may have a point there. But since we’ll have to extend
operations fairly often, we probably should consider designing the system
in such a way that we can build on and reuse a given implementation
easily.

Do you see the difference? Do you feel the difference? Without names, we
have to talk about a lot more details explicitly. Obviously this kind of
precise communication is possible only if we share the same understanding
of design patterns. That is why it’s so important to know about design
patterns and to talk about them.

A Design Pattern Carries an Intent
By using the name of a design pattern, you can express your intent
concisely and limit possible misunderstandings. This leads to the second
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property of a design pattern: an intent. The name of a design pattern
conveys its intent. If you use the name of a design pattern, you implicitly
state what you consider to be the problem and what you see as a solution.

Hopefully you realized that in our little conversion, we weren’t talking
about any kind of implementation. We didn’t talk about implementation
details, any features, or any particular C++ standard. We didn’t even talk
about any particular programming language. And please don’t assume that
by giving you the name of a design pattern I have implicitly told you how to
implement the solution. That is not what a design pattern is about. On the
contrary: the name should tell you about the structure that I propose, about
how I plan to manage dependencies and about how I expect the system to
evolve. That is the intent.

In fact, many design patterns have a similar structure. In the GoF book,
many of the design patterns look very much alike, which, of course, raises a
lot of confusion and questions. For instance, structurally, there appears to be
almost no difference between the Strategy, the Command, and the Bridge
design patterns.  However, their intent is very different and you would
therefore use them to solve different problems. As you will see in various
examples in the following chapters, there are almost always many different
implementations you can choose from.

A Design Pattern Introduces an Abstraction
A design pattern always provides some way to reduce dependencies by
introducing some kind of abstraction. This means that a design pattern is
always concerned with managing the interaction between software entities
and decoupling pieces of your software. For example, consider the Strategy
design pattern, one of the original GoF design patterns, in Figure 3-1.
Without going into too much detail, the Strategy design pattern introduces
an abstraction in the form of the Strategy base class. This base class
decouples the Strategy user (the Context class in the high level of your
architecture) from the implementation details of the concrete strategies
(Concrete StrategyA and ConcreteStrategyB in the low level of your
architecture). As such, Strategy fulfills the properties of a design pattern.
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Figure 3-1. The GoF Strategy design pattern

A similar example is the Factory Method design pattern (yet another GoF
design pattern; see Figure 3-2). The intent of Factory Method is to decouple
from the creation of specific products. For that purpose, it introduces two
abstractions in the form of the Product and Creator base classes, which
architecturally reside in the high level. The implementation details, given by
means of the ConcreteProduct and Concrete Crea tor classes, reside on
the low level of the architecture. With this architectural structure, Factory
Method also qualifies as a design pattern: it has a name, the intent to
decouple, and it introduces abstractions.



Figure 3-2. The GoF Factory Method design pattern

Note that the abstraction introduced by a design pattern is not necessarily
introduced by means of a base class. As I will show you in the following
sections and chapters, this abstraction can be introduced in many different
ways, for instance, by means of templates or simply by function
overloading. Again, a design pattern does not imply any specific
implementation.

As a counter example, let us consider the std::make_unique() function:

namespace std { 
 
template< typename T, typename... Args > 
unique_ptr<T> make_unique( Args&&... args ); 
 
} // namespace std



In the C++ community, we often talk about the std::make_unique()
function as a factory function. It’s important to note that although the term
factory function gives the impression that std::make_unique() is one
example of the Factory Method design pattern, this impression is incorrect.
A design pattern helps you to decouple by introducing an abstraction, which
allows you to customize and defer implementation details. In particular, the
intent of the Factory Method design pattern is to introduce a customization
point for the purpose of object instantiation. std::make_unique() does not
provide such a customization point: if you use std::make_unique(), you
know that you will get a std::unique_ptr to the type you are asking for
and that the instance will be created by means of new:

// This will create a 'Widget' by means of calling 'new' 
auto ptr = std::make_unique<Widget>( /* some Widget arguments */ );

Since std::make_unique() doesn’t provide you with any way to
customize that behavior, it can’t help to reduce coupling between entities,
and thus it cannot serve the purpose of a design pattern.  Still,
std::make_unique() is a recurring solution for a specific problem. In
other words, it is a pattern. However, it isn’t a design pattern but an
implementation pattern. It is a popular solution to encapsulate
implementation details (in this case, the generation of an instance of
Widget), but it does not abstract from what you get or how it will be
created. As such, it is part of the Implementation Details level but not the
Software Design level (refer back to Figure 1-1).

The introduction of abstractions is the key to decoupling software entities
from one another and to designing for change and extension. There is no
abstraction in the std::make_unique() function template, and thus no way
for you to extend the functionality (you cannot even properly overload or
specialize). In contrast, the Factory Method design pattern does provide an
abstraction from what is created and how this something is created
(including actions before and after the instantiation). Due to that abstraction
you’ll be able to write new factories at a later point, without having to
change existing code. Therefore, the design pattern helps you decouple and
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extend your software, while std::make_unique() is only an
implementation pattern.

A Design Pattern Has Been Proven
Last but not least, a design pattern has been proven over the years. The
Gang of Four did not collect all possible solutions, only solutions that were
commonly used in different codebases to solve the same problem (although
potentially with different implementations). Thus a solution has to
demonstrate its value several times before it emerges as a pattern.

To summarize: a design pattern is a proven, named solution, which
expresses a very specific intent. It introduces some kind of abstraction,
which helps to decouple software entities and thus helps to manage the
interaction between software entities. Just as we should use the term Design
to denote the art of managing dependencies and decoupling (see “Guideline
1: Understand the Importance of Software Design”), we should use the term
Design Pattern accurately and on purpose.

GUIDELINE 11: UNDERSTAND THE PURPOSE OF
DESIGN PATTERNS

Understand that design patterns are proven, named solutions with
an intent to decouple.

Realize that design patterns introduce some kind of abstraction.

Keep in mind that design patterns are targeted at software design,
i.e., help to manage dependencies.

Be aware of the difference between design patterns and
implementation patterns.



Guideline 12: Beware of Design Pattern
Misconceptions
The last section focused on explaining the purpose of a design pattern: the
combination of a name, an intent, and some form of abstraction to decouple
software entities. However, just as it’s important to understand what a
design pattern is, it’s important to understand what a design pattern is not.
Unfortunately, there are several common misconceptions about design
patterns:

Some consider design patterns as a goal and as a guarantee for
achieving good software quality.

Some argue that design patterns are based on a particular
implementation and thus are language-specific idioms.

Some say that design patterns are limited to object-oriented
programming and dynamic polymorphism.

Some consider design patterns outdated or even obsolete.

These misconceptions come as no surprise since we rarely talk about design
but instead focus on features and language mechanics (see “Guideline 1:
Understand the Importance of Software Design”). For that reason, I will
debunk the first three misconceptions in this guideline and will deal with
the fourth one in the next section.

Design Patterns Are Not a Goal
Some developers love design patterns. They are so infatuated with them
that they try to solve all their problems by means of design patterns,
whether it is reasonable or not. Of course, this way of thinking potentially
increases the complexity of code and decreases comprehensibility, which
may prove to be counterproductive. Consequently, this overuse of design
patterns may result in frustration in other developers, in a bad reputation of
design patterns in general, or even in rejection of the general idea of
patterns.



To spell it out: design patterns are not a goal. They are a means to achieve a
goal. They may be part of the solution. But they are not a goal. As Venkat
Subramaniam would say: if you get up in the morning, thinking “What
design pattern will I use today?”, then this is a telltale sign that you are
missing the purpose of design patterns.  There is no reward, no medal, for
using as many design patterns as possible. The use of a design pattern
shouldn’t create complexity but, on the contrary, decrease complexity. The
code should become simpler, more comprehensible, and easier to change
and maintain, simply because the design pattern should help to resolve
dependencies and create a better structure. If using a design pattern leads to
higher complexity and creates problems for other developers, it apparently
isn’t the right solution.

Just to be clear: I’m not telling you not to use design patterns. I’m merely
telling you not to overuse them, just as I would tell you not to overuse any
other tool. It always depends on the problem. For instance, a hammer is a
great tool, as long as your problem is nails. As soon as your problem
changes to screws, a hammer becomes a somewhat inelegant tool.  To
properly use design patterns, to know when to use them and when not to use
them, it’s so important to have a firm grasp of them, to understand their
intent and structural properties, and to apply them wisely.

Design Patterns Are Not About Implementation Details
One of the most common misconceptions about design patterns is that they
are based on a specific implementation. This includes the opinion that
design patterns are more or less language-specific idioms. This
misconception is easy to understand, as many design patterns, in particular
the GoF patterns, are usually presented in an object-oriented setting and
explained by means of object-oriented examples. In such a context, it’s easy
to mistake the implementation details for a specific pattern and to assume
that both are the same.

Fortunately, it’s also easy to demonstrate that design patterns are not about
implementation details, any particular language feature, or any C++
standard. Let’s take a look at different implementations of the same design
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pattern. And yes, we will start with the classic, object-oriented version of
the design pattern.

Consider the following scenario: we want to draw a given shape.  The code
snippet demonstrates this by means of a circle, but of course it could be any
other kind of shape, like a square or a triangle. For the purpose of drawing,
the Circle class provides the draw() member function:

class Circle 
{ 
 public: 
   void draw( /*...*/ );  // Implemented in terms of some graphics library 
   // ... 
};

It now appears self-evident that you need to implement the draw()
function. Without further thought, you might do this by means of a common
graphics library such as OpenGL, Metal, Vulcan, or any other graphics
library. However, it would be a big design flaw if the Circle class provides
an implementation of the draw() functionality itself: by implementing the
draw() function directly, you would introduce a strong coupling to your
chosen graphics library. This comes with a couple of downsides:

For every possible application of Circle, you would always need the
graphics library to be available, even though you might not be
interested in graphics but only need it as a geometric primitive.

Every change to the graphics library might have an effect on the
Circle class, resulting in necessary modifications, retesting,
redeployment, etc.

Switching to another library in the future would mean everything but a
smooth transition.

These problems all have a common source: implementing the draw()
function directly within the Circle class violates the Single-Responsibility
Principle (SRP; see “Guideline 2: Design for Change”). The class wouldn’t
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change for a single reason anymore and would strongly depend on that
design decision.

The classic object-oriented solution for this problem is to extract the
decision about how to draw the circle and introduce an abstraction for that
by means of a base class. Introducing such a variation point is the effect of
the Strategy design pattern (see Figure 3-3).

Figure 3-3. The Strategy design pattern applied to drawing circles

The intent of the Strategy design pattern is to define a family of algorithms
and encapsulate each one, therefore making them interchangeable. Strategy
lets the algorithm vary independently from clients that use it. By
introducing the DrawStrategy base class, it becomes possible to easily vary
the draw() implementation of the given Circle. This also enables
everyone, not just you, to implement a new drawing behavior without
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modifying existing code and to inject it from the outside into the Circle.
This is what we commonly call dependency injection:

#include <Circle.h> 
#include <OpenGLStrategy.h> 
#include <cstdlib> 
#include <utility> 
 
int main() 
{ 
   // ... 
 
   // Creating the desired drawing strategy for a circle. 
   auto strategy = 
      std::make_unique_ptr<OpenGLStrategy>( /* OpenGL-specific arguments */ ); 
 
   // Injecting the strategy into the circle; the circle does not have to know 
   // about the specific kind of strategy, but can with blissful ignorance use 
   // it via the 'DrawStrategy' abstraction. 
   Circle circle( 4.2, std::move(strategy) ); 
   circle.draw( /*...*/ ); 
 
   // ... 
 
   return EXIT_SUCCESS; 
}

This approach vastly increases the flexibility with respect to different
drawing behavior: it factors out all dependencies on specific libraries and
other implementation details and thus makes the code more changeable and
extensible. For instance, it’s now easily possible to provide a special
implementation for testing purposes (i.e., a TestStrategy). This
demonstrates that the improved flexibility has a very positive impact on the
testability of the design.

The Strategy design pattern is one of the classic GoF design patterns. As
such, it is often referred to as an object-oriented design pattern and is often
considered to require a base class. However, the intent of Strategy is not
limited to object-oriented programming. Just as it’s possible to use a base
class for the abstraction, it is just as easily possible to rely on a template
parameter:



template< typename DrawStrategy > 
class Circle 
{ 
 public: 
   void draw( /*...*/ ); 
};

In this form, deciding how to draw the circle happens at compile time:
instead of writing a base class DrawStrategy and passing a pointer to a
DrawStrategy at runtime, the implementation details for drawing are
provided by means of the DrawStrategy template argument. Note that
while the template parameter allows you to inject the implementation
details from the outside, the Circle is still not depending on any
implementation details. Therefore you have still decoupled the Circle class
from the used graphics library. In comparison to the runtime approach,
though, you will have to recompile every time the DrawStrategy changes.

While it’s true that the template-based solution fundamentally changes the
properties of the example (i.e., no base class and no virtual functions, no
runtime decisions, no single Circle class, but one Circle type for every
concrete DrawStrategy), it still implements the intent of the Strategy
design pattern perfectly. Thus this demonstrates that a design pattern is not
restricted to a particular implementation or a specific form of abstraction.

Design Patterns Are Not Limited to Object-Oriented
Programming or Dynamic Polymorphism
Let’s consider another use case for the Strategy design pattern: the Standard
Library accumulate() function template from the <numeric> header:

std::vector<int> v{ 1, 2, 3, 4, 5 }; 
auto const sum = 
   std::accumulate( begin(v), end(v), int{0} );

By default, std::accumulate() sums up all elements in the given range.
The third argument specifies the initial value for the sum. Since
std::accumulate() uses the type of that argument as the return type, the



type of the argument is explicitly highlighted as int{0} instead of just 0 to
prevent subtle misunderstandings. However, summing up elements is only
the tip of the iceberg: if you need to, you can specify how elements are
accumulated by providing a fourth argument to std::accumulate(). For
instance, you could use std::plus or std::multiplies from the
<functional> header:

std::vector<int> v{ 1, 2, 3, 4, 5 }; 
auto const sum = 
   std::accumulate( begin(v), end(v), int{0}, std::plus<>{} ); 
auto const product = 
   std::accumulate( begin(v), end(v), int{1}, std::multiplies<>{} );

By means of the fourth argument, std::accumulate() can be used for any
kind of reduction operation, and thus the fourth argument represents the
implementation of the reduction operation. As such, it enables us to vary
the implementation by injecting the details of how the reduction should
work from the outside. std::accumulate() therefore does not depend on a
single, specific implementation but can be customized by anyone to a
specific purpose. This represents exactly the intent of the Strategy design
pattern.

std::accumulate() draws its power from a generic form of the Strategy
design pattern. Without the ability to change this behavior, it would be
useful in only a very limited number of use cases. Due to the Strategy
design pattern, the number of possible uses is endless.

The example of std::accumulate() demonstrates that design patterns,
even the classic GoF patterns, are not tied to one particular implementation
and additionally are not limited to object-oriented programming. Clearly the
intent of many of these patterns is also useful for other paradigms like
functional or generic programming.  Therefore, design patterns are not
limited to dynamic polymorphism, either. On the contrary: design patterns
work equally well for static polymorphism and can therefore be used in
combination with C++ templates.
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To further emphasize the point and to show you an additional example of
the Strategy design pattern, consider the declarations for the std::vector
and std::set class templates:

namespace std { 
 
template< class T 
        , class Allocator = std::allocator<T> > 
class vector; 
 
template< class Key 
        , class Compare = std::less<Key> 
        , class Allocator = std::allocator<Key> > 
class set; 
 
} // namespace std

All containers in the Standard Library (with the exception of std::array)
provide you with the opportunity to specify a custom allocator. In the case
of std::vector it’s the second template argument, and for std::set it’s
the third argument. All memory requests from the container are handled via
the given allocator.

By exposing a template argument for the allocator, the Standard Library
containers give you the opportunity to customize memory allocation from
the outside. They enable you to define a family of algorithms (in earlier
case, an algorithm for the memory acquisition) and encapsulate each one
and therefore make them interchangeable. Consequently you’re able to vary
this algorithm independently from clients (in this case, the containers) that
use it.

Having read that description, you should recognize the Strategy design
pattern. In this example, Strategy is again based on static polymorphism and
implemented by means of a template argument. Clearly, Strategy is not
limited to dynamic polymorphism.

While it’s obviously true that design patterns in general aren’t limited to
object-oriented programming or dynamic polymorphism, I should still
explicitly state that there are some design patterns whose intent is targeted
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to alleviate the usual problems in object-oriented programming (e.g., the
Visitor and Prototype design patterns).  And of course there are also
design patterns focused on functional programming or generic
programming (e.g., the Curiously Recurring Template Pattern [CRTP] and
Expression Templates).  While most design patterns are not paradigm
centric and their intention can be used in a variety of implementations,
some are more specific.

In the upcoming chapters, you’ll see examples for both categories. You will
see design patterns that have a very general intent and are consequently of
general usefulness. Additionally, you will see some design patterns that are
more paradigm-specific and, due to that, will fail to be useful outside of
their target domain. Still, they all have the main characteristics of design
patterns in common: a name, an intent, and some form of abstraction.

In summary: design patterns are not limited to object-oriented
programming, nor are they limited to dynamic polymorphism. More
specifically, design patterns are not about a particular implementation and
they are not language-specific idioms. Instead, they are focused entirely on
the intent to decouple software entities in a specific way.

GUIDELINE 12: BEWARE OF DESIGN PATTERN
MISCONCEPTIONS

Consider design patterns as a tool to solve a design problem, not as
a goal.

Be aware that design patterns are not limited to object-oriented
programming.

Bear in mind that design patterns are not limited to dynamic
polymorphism.

Understand that design patterns are not language-specific idioms.

15

16



Guideline 13: Design Patterns Are
Everywhere
The previous section has demonstrated that design patterns are not limited
to object-oriented programming or dynamic polymorphism, that they are
not language-specific idioms, and that they are not about a particular
implementation. Still, due to these common misconceptions and because we
don’t consider C++ as solely object-oriented programming language
anymore, some people even claim that design patterns are outdated or
obsolete.

I imagine you’re now looking a little skeptical. “Obsolete? Isn’t that a little
exaggerated?” you ask. Well, unfortunately not. To tell a little war story, in
early 2021 I had the honor of giving a virtual talk about design patterns in a
German C++ user group. My main objective was to explain what design
patterns are and that they are very much in use today. During the talk, I felt
good, invigorated in my mission to help people see all the benefits of design
patterns, and I sure gave my best to make everybody see the light that
knowledge about design patterns brings. Still, a few days after the
publication of the talk on YouTube, a user commented on the talk with
“Really? Design Patterns in 2021?”

I very much hope that you are now shaking your head in disbelief. Yes, I
could not believe it either, especially after having shown that there are
hundreds of examples for design patterns in the C++ Standard Library. No,
design patterns are neither outdated nor obsolete. Nothing could be further
from the truth. To prove that design patterns are still very much alive and
relevant, let’s consider the updated allocators facility in the C++ Standard
Library. Take a look at the following code example that uses allocators from
the std::pmr (polymorphic memory resource) namespace:

 
#include <array> 
#include <cstddef> 
#include <cstdlib> 
#include <memory_resource> 
#include <string> 
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#include <vector> 
 
int main() 
{ 
   std::array<std::byte,1000> raw;  // Note: not initialized!   
 
   std::pmr::monotonic_buffer_resource 
      buffer{ raw.data(), raw.size(), std::pmr::null_memory_resource() };   
 
   std::pmr::vector<std::pmr::string> strings{ &buffer };   
 
   strings.emplace_back( "String longer than what SSO can handle" ); 
   strings.emplace_back( "Another long string that goes beyond SSO" ); 
   strings.emplace_back( "A third long string that cannot be handled by SSO" 
); 
 
   // ... 
 
   return EXIT_SUCCESS; 
} 

This example demonstrates how to use a
std::pmr::monotonic_buffer_resource as allocator to redirect all
memory allocations into a predefined byte buffer. Initially we are creating a
buffer of 1,000 bytes in the form of a std::array ( ). This buffer is
provided as a source of memory to a
std::pmr::monotonic_buffer_resource by means of passing a pointer
to the first element (via raw.data()) and the size of the buffer (via
raw.size()) ( ).

The third argument to the monotonic_buffer_resource represents a
backup allocator, which is used in case the monotonic_buffer_resource
runs out of memory. Since we don’t need additional memory in this case,
we use the std::pmr::null _mem ory_resource() function, which gives us
a pointer to the standard allocator that always fails to allocate. That means
that you can ask as nicely as you want, but the allocator returned by
std::pmr::null_memory_resource() will always throw an exception
when you ask for memory.

The created buffer is passed as allocator to the strings vector, which will
now acquire all its memory from the initial byte buffer ( ). Furthermore,
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since the vector forwards the allocator to its elements, even the three
strings, which we add by means of the emplace_back() function and
which are all too long to rely on the Small String Optimization (SSO), will
acquire all their memory from the byte buffer. Thus, no dynamic memory is
used in the entire example; all memory will be taken from the byte array.

At first glance, this example doesn’t look like it requires any design pattern
to work. However, the allocator functionality used in this example uses at
least four different design patterns: the Template Method design pattern, the
Decorator design pattern, the Adapter design pattern, and (again) the
Strategy design pattern.

There are even five design pattern if you count the Singleton pattern: the
null _mem ory_resource() function ( ) is implemented in terms of the
Singleton pattern:  it returns a pointer to a static storage duration object,
which is used to guarantee that there is at most one instance of this
allocator.

All C++ allocators from the pmr namespace, including the allocator
returned by null_memory_resource() and the
monotonic_buffer_resource, are derived from the
std::pmr::memory_resource base class. The first design pattern becomes
visible if you look at the memory_resource class definition:

namespace std::pmr { 
 
class memory_resource 
{ 
 public: 
   // ... a virtual destructor, some constructors and assignment operators 
 
   [[nodiscard]] void* allocate(size_t bytes, size_t alignment); 
   void deallocate(void* p, size_t bytes, size_t alignment); 
   bool is_equal(memory_resource const& other) const noexcept; 
 
 private: 
   virtual void* do_allocate(size_t bytes, size_t alignment) = 0; 
   virtual void do_deallocate(void* p, size_t bytes, size_t alignment) = 0; 
   virtual bool do_is_equal(memory_resource const& other) const noexcept = 0; 
}; 
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} // namespace std::pmr

You may notice that the three functions in the public section of the class
have a virtual counterpart in the private section of the class. Whereas the
public allocate(), deallocate(), and is_equal() functions represent
the user-facing interface of the class, the do_allocate(),
do_deallocate(), and do_is_equal() functions represent the interface
for derived classes. This separation of concerns is an example of the Non-
Virtual Interface (NVI) idiom, which itself is an example of the Template
Method design pattern.

The second design pattern we implicitly use is the Decorator design
pattern.  Decorator helps you to build a hierarchical layer of allocators and
to wrap and extend the functionality of one allocator to another. This idea
becomes clearer in this line:

std::pmr::monotonic_buffer_resource 
   buffer{ raw.data(), raw.size(), std::pmr::null_memory_resource() };

By passing the allocator returned by the null_memory_resource()
function to the monotonic_buffer_resource, we decorate its
functionality. Whenever we ask the monotonic_buffer_resource for
memory via the allocate() function, it may forward the call to its backup
allocator. This way, we can implement many different kinds of allocators,
which in turn can be easily assembled to form a complete memory
subsystem with different layers of allocation strategies. This kind of
combining and reusing pieces of functionality is the strength of the
Decorator design pattern.

You may have noticed that in the example code we have used
std::pmr::vector and std::pmr::string. I assume you remember that
std::string is just a type alias to std::basic_string<char>. Knowing
that, it probably comes as no surprise that the two types in the pmr
namespace are also just type aliases:
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namespace std::pmr { 
 
template< class CharT, class Traits = std::char_traits<CharT> > 
using basic_string = 
   std::basic_string< CharT, Traits, 
                      std::pmr::polymorphic_allocator<CharT> >; 
 
template <class T> 
using vector = 
   std::vector< T, std::pmr::polymorphic_allocator<T> >; 
 
} // namespace std::pmr

These type aliases still refer to the regular std::vector and
std::basic_string classes but do not expose a template parameter for an
allocator anymore. Instead, they employ a
std::pmr::polymorphic_allocator as allocator. This is an example of
the Adapter design pattern.  The intent of an Adapter is to help you to glue
two nonfitting interfaces together. In this case, the
polymorphic_allocator helps to transmit between the classic, static
interface required from the classic C++ allocators and the new, dynamic
allocator interface required by std::pmr::memory_resource.

The fourth and last design pattern used in our example is, again, the
Strategy design pattern. By exposing a template argument for the allocator,
Standard Library containers like std::vector and std::string give you
the opportunity to customize memory allocation from outside. This is a
static form of the Strategy design pattern and has the same intent as
customizing algorithms (see also “Guideline 12: Beware of Design Pattern
Misconceptions”).

This example impressively demonstrates, that design patterns are far from
being obsolete. On closer examination, we see them everywhere: any kind
of abstraction and any attempt to decouple software entities and introduce
flexibility and extensibility is very likely based on some design pattern. For
that reason, it definitely helps to know about the different design patterns
and to understand their intent to recognize them and apply them whenever it
is necessary and appropriate.
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GUIDELINE 13: DESIGN PATTERNS ARE EVERYWHERE

Understand that any kind of abstraction and any attempt to
decouple likely represents a known design pattern.

Learn about the different design patterns and understand their
intent to decouple.

Apply design patterns based on their intent whenever necessary.

Guideline 14: Use a Design Pattern’s Name
to Communicate Intent
In the last two sections, you learned what a design pattern is, what it’s not,
and that design patterns are everywhere. You also learned that every design
pattern has a name, which expresses a clear, concise, and unambiguous
intent. Hence, the name carries meaning.  By using the name of a design
pattern you can express what the problem is and which solution you’ve
chosen to solve the problem, and you can describe how the code is expected
to evolve.

Consider, for instance, the Standard Library accumulate() function:

template< class InputIt, class T, class BinaryOperation > 
constexpr T accumulate( InputIt first, InputIt last, T init, 
                        BinaryOperation op );

The third template parameter is named BinaryOperation. While this does
communicate the fact that the passed callable is required to take two
arguments, the name does not communicate the intent of the parameter. To
express the intent more clearly, consider calling it
BinaryReductionStrategy:

template< class InputIt, class T, class BinaryReductionStrategy > 
constexpr T accumulate( InputIt first, InputIt last, T init, 
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                        BinaryReductionStrategy op );

Both the term Reduction and the name Strategy carry meaning for every
C++ programmer. Therefore, you’ve now captured and expressed your
intent much more clearly: the parameter enables dependency injection of a
binary operation, which allows you to specify how the reduction operation
works. Therefore, the parameter solves the problem of customization. Still,
as you will see in Chapter 5, the Strategy design pattern communicates that
there are certain expectations for the operation. You can only specify how
the reduction operation works; you cannot redefine what accumulate()
does. If that’s what you want to express, you should use the name of the
Command design pattern:

template< class InputIt, class UnaryCommand > 
constexpr UnaryCommand 
   for_each( InputIt first, InputIt last, UnaryCommand f );

The std::for_each() algorithm allows you to apply any kind of unary
operation to a range of elements. To express this intent, the second template
parameter could be named UnaryCommand, which unambiguously expresses
that there are (nearly) no expectations for the operation.

Another example from the Standard Library shows how much value the
name of a design pattern can bring to a piece of code:

 
#include <cstdlib> 
#include <iostream> 
#include <string> 
#include <variant> 
 
struct Print 
{ 
   void operator()(int i) const { 
      std::cout << "int: " << i << '\n'; 
   } 
   void operator()(double d) const { 
      std::cout << "double: " << d << '\n'; 
   } 
   void operator()(std::string const& s) const { 
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      std::cout << "string: " << s << '\n'; 
   } 
}; 
 
int main() 
{ 
   std::variant<int,double,std::string> v{};   
 
   v = "C++ Variant example";   
 
   std::visit(Print{}, v);   
 
   return EXIT_SUCCESS; 
} 

In the main() function, we create a std::variant for the three alternatives
int, double, and std::string ( ). In the next line, we assign a C-style
string literal, which will be converted to a std::string inside the variant (

). Then we print the content of the variant via the std::visit() function
and the Print function object ( ).

Notice the name of the std::visit() function. The name directly refers to
the Visitor design pattern and therefore clearly expresses its intent: you’re
able to apply any operation to the closed set of types contained in the
variant instance.  Also, you can extend the set of operations
nonintrusively.

You see that using the name of a design pattern carries more information
than using an arbitrary name. Still, this shouldn’t imply that naming is
easy.  A name should primarily help you understand the code in a specific
context. If the name of a design pattern can help with that, then consider
including the design pattern name to express your intent.

25

26



GUIDELINE 14: USE A DESIGN PATTERN’S NAME TO
COMMUNICATE INTENT

Use the name of a design pattern to communicate the intent of a
solution.

Use the name of a design pattern to improve readability.

1  The Gang of Four, or simply GoF, is a commonly used reference to the four authors Erich
Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides and their book on design
patterns: Design Patterns: Elements of Reusable Object-Oriented Software (Prentice Hall). The
GoF book still is, after several decades, the reference on design patterns. Throughout the rest of
this book, I will refer to either the GoF book, the GoF patterns, or the characteristic, object-
oriented GoF style.

2  If you do not know the Visitor design pattern yet, don’t worry. I will introduce the pattern in
Chapter 4.

3  The Strategy design pattern will be explained in detail in Chapter 5, the Decorator design
pattern in Chapter 9.

4  I mention only the design patterns that I will explain in later chapters (see the Strategy and
Command design patterns in Chapter 5 and the Bridge design pattern in “Guideline 28: Build
Bridges to Remove Physical Dependencies”). There are a few more design patterns that share
the same structure.

5  If you are unfamiliar with the Strategy design pattern, rest assured that Chapter 5 will provide
much more information, including several code examples.

6  This may be a controversial example. Since I know the C++ community, I know that you may
have a different opinion. However, I stand by mine: due to its definition, std::make_unique()
is incapable of decoupling software entities and therefore does not play a role on the level of
software design. It’s merely an implementation detail (but a valuable and useful one).

7  Venkat Subramaniam and Andrew Hunt, Practices of an Agile Developer (The Pragmatic
Programmers, LLC, 2017).

8  Well, it works, in some definition of “works.”

9  I know what you’re thinking: “You cannot be serious! There is so many interesting examples
out there, but you select the oldest and most boring example in the book!” OK, I admit that
might not be the most exciting example to pick. But, still, I have two good reasons to use this
example. First, the scenario is so well known that I can assume that no one has trouble
understanding it. That means that everyone should be able to follow my arguments about



software design. And second, let’s agree that it’s kind of a tradition in computer science to start
with a shape or an animal example. And, of course, I do not want to disappoint traditionalists.

10  Chapter 5 will provide a complete and thorough introduction of the Strategy design pattern.

11  You may (correctly) observe that even without the fourth argument you could change how the
accumulation works by providing a custom addition operator (i.e., operator+()) for the given
type. However, that is only of limited use. While you can provide a custom addition operator
for user-defined types, you cannot provide a custom addition operator for fundamental types
(such as the int in the example). Also, it’s very questionable to define operator+() for
anything other than an addition operation (or related operations like the concatenation of
strings). Thus, relying on the addition operator would be limiting technically and semantically.

12  In his CppCon 2016 talk “std::accumulate: Exploring an Algorithmic Empire”, Ben Deane
has impressively demonstrated how powerful std::accumulate() is thanks to that fourth
argument.

13  For more information about STL algorithms and their functional programming heritage, see
Ivan Cukic’s excellent introduction to Functional Programming in C++ (Manning).

14  Another commonly used name for that form of the Strategy design pattern is Policy-Based
Design; see “Guideline 19: Use Strategy to Isolate How Things Are Done”.

15  I will explain the Visitor design pattern in Chapter 4 and the Prototype design pattern in
“Guideline 30: Apply Prototype for Abstract Copy Operations”.

16  Again, I’m referring you to Ivan Cukic’s introduction to Functional Programming in C++.
The CRTP design pattern will be the topic of “Guideline 26: Use CRTP to Introduce Static
Type Categories”. For information on Expression Templates, a template-based pattern, refer to
the C++ template reference: David Vandevoorde, Nicolai Josuttis, and Douglas Gregor’s C++
Templates: The Complete Guide (Addison-Wesley).

17  I would argue that C++ has been a multiparadigm programming language since the moment
the first implementation of templates was added to the language in 1989. The impact of
templates on the language became clear with the addition of part of the Standard Template
Library (STL) to the Standard Library in 1994. Since then, C++ has provided object-oriented,
functional, and generic capabilities.

18  The Small String Optimization (SSO) is a common optimization for small strings. Instead of
allocating dynamic memory on the heap via the provided allocator, the string would store the
small number of characters directly into the stack part of the string. Since a string usually
occupies between 24 and 32 bytes on the stack (which is not a C++ standard requirement but a
property of common implementations of std::string), anything beyond 32 bytes will require
a heap allocation. That is the case with the three given strings.

19  Singleton is one of the original 23 GoF design patterns. But I will do my best in “Guideline
37: Treat Singleton as an Implementation Pattern, Not a Design Pattern” to convince you that
Singleton is not actually a design pattern but an implementation detail. For that reason, I will
refer to Singleton not as a design pattern but simply as an implementation pattern.

20  Unfortunately, I won’t cover the Template Method design pattern in this book. This isn’t
because it’s not important but simply due to a lack of available pages. Please refer to the GoF
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book for more details.

21  I will give a complete introduction of the Decorator design pattern in Chapter 9.

22  The Adapter design pattern will be the topic of “Guideline 24: Use Adapters to Standardize
Interfaces”.

23  Good names always carry meaning. This is why they are so fundamentally important.

24  I will explain the Command design pattern alongside the Strategy design pattern in Chapter 5.

25  The Visitor design pattern, including the modern implementation with std::variant, will be
our focus in Chapter 4.

26  Naming is hard, as Kate Gregory aptly remarks in her highly recommended talk “Naming Is
Hard: Let’s Do Better” at CppCon 2019.
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Chapter 4. The Visitor Design
Pattern

This entire chapter is focused on the Visitor design pattern. If you’ve
already heard about the Visitor design pattern or even used it in your own
designs, you might be wondering why I have chosen Visitor as the first
design pattern to explain in detail. Yes, Visitor is definitely not one of the
most glamorous design patterns. However, it will definitely serve as a great
example to demonstrate the many options you have when implementing a
design pattern and how different these implementations can be. It will also
serve as an effective example of advertising the advantages of modern C++.

In “Guideline 15: Design for the Addition of Types or Operations”, we first
talk about the fundamental design decision you’ll need to make when
walking in the realm of dynamic polymorphism: focus on either types or
operations. In that guideline, we will also talk about the intrinsic strengths
and weaknesses of programming paradigms.

In “Guideline 16: Use Visitor to Extend Operations”, I will introduce you to
the Visitor design pattern. I will explain its intent to extend operations
instead of types, and show you both the advantages and the shortcomings of
the classic Visitor pattern.

In “Guideline 17: Consider std::variant for Implementing Visitor”, you will
make the acquaintance of the modern implementation of the Visitor design
pattern. I will introduce you to std::variant and explain the many
advantages of that particular implementation.

In “Guideline 18: Beware the Performance of Acyclic Visitor”, I will
introduce you to the Acyclic Visitor. At first glance, this approach appears to
resolve some fundamental problems of the Visitor pattern, but on closer
inspection we will find that the runtime overhead may disqualify this
implementation.



Guideline 15: Design for the Addition of
Types or Operations
To you, the term dynamic polymorphism may sound like a lot of freedom. It
may feel similar to when you were still a kid: endless possibilities, no
limitations! Well, you have grown older and faced reality: you can’t have
everything, and there is always a choice to be made. Unfortunately, it’s
similar with dynamic polymorphism. Despite the fact that it sounds like
complete freedom, there is a limiting choice: do you want to extend types or
operations?

To see what I mean, let’s return to the scenario from Chapter 3: we want to
draw a given shape.  We stick to dynamic polymorphism, and for our initial
try, we implement this problem with good old procedural programming.

A Procedural Solution
The first header file Point.h provides a fairly simple Point class. This will
mainly serve to make the code complete, but also gives us the idea that
we’re dealing with 2D shapes:

//---- <Point.h> ---------------- 
 
struct Point 
{ 
   double x; 
   double y; 
};

The second conceptual header file Shape.h proves to be much more
interesting:

 
//---- <Shape.h> ---------------- 
 
enum ShapeType   
{ 
   circle, 
   square 
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}; 
 
class Shape   
{ 
 protected: 
   explicit Shape( ShapeType type ) 
      : type_( type )   
   {} 
 
 public: 
   virtual ~Shape() = default;   
 
   ShapeType getType() const { return type_; }   
 
 private: 
   ShapeType type_;   
}; 

First, we introduce the enumeration ShapeType, which currently lists the
two enumerators, circle and square ( ). Apparently, we are initially
dealing with only circles and squares. Second, we introduce the class Shape
( ). Given the protected constructor and the virtual destructor ( ), you can
anticipate that Shape is supposed to work as a base class. But that’s not the
surprising detail about Shape: Shape has a data member of type ShapeType
( ). This data member is initialized via the constructor ( ) and can be
queried via the getType() member function ( ). Apparently, a Shape stores
its type in the form of the ShapeType enumeration.

One example of the use of the Shape base class is the Circle class:

 
//---- <Circle.h> ---------------- 
 
#include <Point.h> 
#include <Shape.h> 
 
class Circle : public Shape   
{ 
 public: 
   explicit Circle( double radius ) 
      : Shape( circle )   
      , radius_( radius ) 
   { 



      /* Checking that the given radius is valid */ 
   } 
 
   double radius() const { return radius_; } 
   Point  center() const { return center_; } 
 
 private: 
   double radius_; 
   Point center_{}; 
}; 

Circle publicly inherits from Shape ( ), and for that reason, and due to the
lack of a default constructor in Shape, needs to initialize the base class ( ).
Since it’s a circle, it uses the circle enumerator as an argument to the base
class constructor.

As stated before, we want to draw shapes. We therefore introduce the
draw() function for circles. Since we don’t want to couple too strongly to
any implementation details of drawing, the draw() function is declared in
the conceptual header file DrawCircle.h and defined in the corresponding
source file:

//---- <DrawCircle.h> ---------------- 
 
class Circle; 
 
void draw( Circle const& ); 
 
 
//---- <DrawCircle.cpp> ---------------- 
 
#include <DrawCircle.h> 
#include <Circle.h> 
#include /* some graphics library */ 
 
void draw( Circle const& c ) 
{ 
   // ... Implementing the logic for drawing a circle 
}

Of course, there are not only circles. As indicated by the square
enumerator, there is also a Square class:



 
//---- <Square.h> ---------------- 
 
#include <Point.h> 
#include <Shape.h> 
 
class Square : public Shape   
{ 
 public: 
   explicit Square( double side ) 
      : Shape( square )   
      , side_( side ) 
   { 
      /* Checking that the given side length is valid */ 
   } 
 
   double side  () const { return side_; } 
   Point  center() const { return center_; } 
 
 private: 
   double side_; 
   Point center_{};  // Or any corner, if you prefer 
}; 
 
 
//---- <DrawSquare.h> ---------------- 
 
class Square; 
 
void draw( Square const& ); 
 
 
//---- <DrawSquare.cpp> ---------------- 
 
#include <DrawSquare.h> 
#include <Square.h> 
#include /* some graphics library */ 
 
void draw( Square const& s ) 
{ 
   // ... Implementing the logic for drawing a square 
} 

The Square class looks very similar to the Circle class ( ). The major
difference is that a Square initializes its base class with the square
enumerator ( ).



With both circles and squares available, we now want to draw an entire
vector of different shapes. For that reason, we introduce the
drawAllShapes() function:

 
//---- <DrawAllShapes.h> ---------------- 
 
#include <memory> 
#include <vector> 
class Shape; 
 
void drawAllShapes( std::vector<std::unique_ptr<Shape>> const& shapes );   
 
 
//---- <DrawAllShapes.cpp> ---------------- 
 
#include <DrawAllShapes.h> 
#include <Circle.h> 
#include <Square.h> 
 
void drawAllShapes( std::vector<std::unique_ptr<Shape>> const& shapes ) 
{ 
   for( auto const& shape : shapes ) 
   { 
      switch( shape->getType() )   
      { 
         case circle: 
            draw( static_cast<Circle const&>( *shape ) ); 
            break; 
         case square: 
            draw( static_cast<Square const&>( *shape ) ); 
            break; 
      } 
   } 
} 

drawAllShapes() takes a vector of shapes in the form of
std::unique_ptr<Shape> ( ). The pointer to the base class is necessary to
hold different kinds of concrete shapes, and the std::unique_ptr in
particular to automatically manage the shapes via the RAII idiom. Inside the
function, we start by traversing the vector in order to draw every shape.
Unfortunately, all we have at this point are Shape pointers. Therefore, we
have to ask every shape nicely by means of the getType() function ( ):



what kind of shape are you? If the shape replies with circle, we know that
we have to draw it as a Circle and perform the corresponding
static_cast. If the shape replies with square, we draw it as a Square.

I can feel that you’re not particularly happy about this solution. But before
talking about the shortcomings, let’s consider the main() function:

//---- <Main.cpp> ---------------- 
 
#include <Circle.h> 
#include <Square.h> 
#include <DrawAllShapes.h> 
#include <memory> 
#include <vector> 
 
int main() 
{ 
   using Shapes = std::vector<std::unique_ptr<Shape>>; 
 
   // Creating some shapes 
   Shapes shapes; 
   shapes.emplace_back( std::make_unique<Circle>( 2.3 ) ); 
   shapes.emplace_back( std::make_unique<Square>( 1.2 ) ); 
   shapes.emplace_back( std::make_unique<Circle>( 4.1 ) ); 
 
   // Drawing all shapes 
   drawAllShapes( shapes ); 
 
   return EXIT_SUCCESS; 
}

It works! With this main() function, the code compiles and draws three
shapes (two circles and a square). Isn’t that great? It is, but it won’t stop
you from going into a rant: “What a primitive solution! Not only is the
switch a bad choice for distinguishing between different kinds of shapes,
but it also doesn’t have a default case! And who had this crazy idea to
encode the type of the shapes by means of an unscoped enumeration?”
You’re looking suspiciously in my direction…

Well, I can understand your reaction. But let’s analyze the problem in a
little more detail. Let me guess: you remember “Guideline 5: Design for
Extension”. And you now imagine what you would have to do to add a third
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kind of shape. First, you would have to extend the enumeration. For
instance, we would have to add the new enumerator triangle ( ):

 
enum ShapeType 
{ 
   circle, 
   square, 
   triangle   
}; 

Note that this addition would have an impact not only on the switch
statement in the drawAllShapes() function (it is now truly incomplete),
but also on all classes derived from Shape (Circle and Square). These
classes depend on the enumeration since they depend on the Shape base
class and also use the enumeration directly. Therefore, changing the
enumeration would result in a recompilation of all your source files.

That should strike you as a serious issue. And it is indeed. The heart of the
problem is the direct dependency of all shape classes and functions on the
enumeration. Any change to the enumeration results in a ripple effect that
requires the dependent files to be recompiled. Obviously, this directly
violates the Open-Closed Principle (OCP) (see “Guideline 5: Design for
Extension”). This doesn’t seem right: adding a Triangle shouldn’t result in
a recompilation of the Circle and Square classes.

There is more, though. In addition to actually writing a Triangle class
(something that I leave to your imagination), you have to update the switch
statement to handle triangles ( ):

 
void drawAllShapes( std::vector<std::unique_ptr<Shape>> const& shapes ) 
{ 
   for( auto const& shape : shapes ) 
   { 
      switch( shape->getType() ) 
      { 
         case circle: 
            draw( static_cast<Circle const&>( *shape ) ); 
            break; 



         case square: 
            draw( static_cast<Square const&>( *shape ) ); 
            break; 
         case triangle:   
            draw( static_cast<Triangle const&>( *shape ) ); 
            break; 
      } 
   } 
} 

I can imagine your outcry: “Copy-and-paste! Duplication!” Yes, in this
situation it is very likely that a developer will use copy-and-paste to
implement the new logic. It’s just so convenient because the new case is so
similar to the previous two cases. And indeed, this is an indication that the
design could be improved. However, I see a far more serious flaw: I would
assume that in a larger codebase, this is not the only switch statement. On
the contrary, there will be others that need to be updated as well. How many
are there? A dozen? Fifty? Over a hundred? And how do you find all of
these? OK, so you argue that the compiler would help you with this task.
Perhaps with the switches, yes, but what if there are also if-else-if cascades?
And then, after this update marathon, when you think you are done, how do
you guarantee that you have truly updated all the necessary sections?

Yes, I can understand your reaction and why you prefer not to have this
kind of code: this explicit handling of types is a maintenance nightmare. To
quote Scott Meyers:

This kind of type-based programming has a long history in C, and one of
the things we know about it is that it yields programs that are essentially
unmaintainable.

An Object-Oriented Solution
So let me ask: what would you have done? How would you have
implemented the drawing of shapes? Well, I can imagine you would have
used an object-oriented approach. That means you would scratch the
enumeration and add a pure virtual draw() function to the Shape base class.
This way, Shape doesn’t have to remember its type anymore:

3



//---- <Shape.h> ---------------- 
 
class Shape 
{ 
 public: 
   Shape() = default; 
 
   virtual ~Shape() = default; 
 
   virtual void draw() const = 0; 
};

Given this base class, derived classes now would have to implement only
the draw() member function ( ):

 
//---- <Circle.h> ---------------- 
 
#include <Point.h> 
#include <Shape.h> 
 
class Circle : public Shape 
{ 
 public: 
   explicit Circle( double radius ) 
      : radius_( radius ) 
   { 
      /* Checking that the given radius is valid */ 
   } 
 
   double radius() const { return radius_; } 
   Point  center() const { return center_; } 
 
   void draw() const override;   
 
 private: 
   double radius_; 
   Point center_{}; 
}; 
 
 
//---- <Circle.cpp> ---------------- 
 
#include <Circle.h> 
#include /* some graphics library */ 
 



void Circle::draw() const 
{ 
   // ... Implementing the logic for drawing a circle 
} 
 
 
//---- <Square.h> ---------------- 
 
#include <Point.h> 
#include <Shape.h> 
 
class Square : public Shape 
{ 
 public: 
   explicit Square( double side ) 
      : side_( side ) 
   { 
      /* Checking that the given side length is valid */ 
   } 
 
   double side  () const { return side_; } 
   Point  center() const { return center_; } 
 
   void draw() const override;   
 
 private: 
   double side_; 
   Point center_{}; 
}; 
 
 
//---- <Square.cpp> ---------------- 
 
#include <Square.h> 
#include /* some graphics library */ 
 
void Square::draw() const 
{ 
   // ... Implementing the logic for drawing a square 
} 

Once the virtual draw() function is in place and implemented by all derived
classes, it can be used to refactor the drawAllShapes() function:

//---- <DrawAllShapes.h> ---------------- 
 



#include <memory> 
#include <vector> 
class Shape; 
 
void drawAllShapes( std::vector< std::unique_ptr<Shape> > const& shapes ); 
 
 
//---- <DrawAllShapes.cpp> ---------------- 
 
#include <DrawAllShapes.h> 
#include <Shape.h> 
 
void drawAllShapes( std::vector< std::unique_ptr<Shape> > const& shapes ) 
{ 
   for( auto const& shape : shapes ) 
   { 
      shape->draw(); 
   } 
}

I can see you relax and start smiling again. This is so much nicer, so much
cleaner. While I understand that you prefer this solution and that you would
like to stay in this comfort zone a little while longer, I unfortunately have to
point out a flaw. Yes, this solution might also come with a disadvantage.

As indicated in the introduction to this section, with an object-oriented
approach, we are now able to add new types very easily. All we have to do
is write a new derived class. We don’t have to modify or recompile any
exiasting code (with the exception of the main() function). That perfectly
fulfills the OCP. However, did you notice that we are not able to easily add
operations anymore? For instance, let’s assume we need a virtual
serialize() function to convert a Shape into bytes. How can we add this
without modifying existing code? How can anyone easily add this operation
without having to touch the Shape base class?

Unfortunately, that isn’t possible anymore. We are now dealing with a
closed set of operations, which means that we violate the OCP in relation to
addition operations. To add a virtual function, the base class needs to be
modified, and all derived classes (circles, squares, etc.) need to implement
the new function, even though the function might never be called. In



summary, the object-oriented solution fulfills the OCP with respect to
adding types but violates it in relation to operations.

I know you thought we left the procedural solution behind for good, but
let’s take a second look. In the procedural approach, adding a new operation
was actually very simple. New operations could be added in the form of
free functions or separate classes, for instance. It wasn’t necessary to
modify the Shape base class or any of the derived classes. Thus in the
procedural solution, we have fulfilled the OCP with respect to adding
operations. But as we’ve seen, the procedural solution violates the OCP in
relation to adding types. Thus, it appears to be an inversion of the object-
oriented solution, which is the other way around.

Be Aware of the Design Choice in Dynamic
Polymorphism
The takeaway of this example is that there is a design choice when using
dynamic polymorphism: either you can add types easily by fixing the
number of operations or you can add operations easily by fixing the number
of types. Thus, the OCP has two dimensions: when designing software, you
have to make a conscious decision about which kind of extension you
expect.

The strength of object-oriented programming is the easy addition of new
types, but its weakness is that the addition of operations becomes much
more difficult. The strength of procedural programming is the easy addition
of operations, but adding types is a real pain (Table 4-1). It depends on your
project: if you expect new types will be added frequently, rather than
operations, you should strive for an OCP solution, which treats operations
as a closed set and types as an open set. If you expect operations will be
added, you should strive for a procedural solution, which treats types as a
closed set and operations as an open set. If you make the right choice, you
will economize your time and the time of your colleagues, and extensions
will feel natural and easy.4



Table 4-1. Strengths and weaknesses of different programming paradigms

Programming paradigm Strength Weakness

Procedural programming Addition of operations Addition of (polymorphic) types

Object-oriented programming Addition of (polymorphic) types Addition of operations

Be aware of these strengths: based on your expectation on how a codebase
will evolve, choose the right approach to design for extensions. Do not
ignore the weaknesses, and do not put yourself in an unfortunate
maintenance hell.

I assume that at this point you’re wondering if it’s possible to have two
open sets. Well, to the best of my knowledge, this is not impossible but it’s
usually impractical. As an example, in “Guideline 18: Beware the
Performance of Acyclic Visitor”, I will show you that performance might
take a significant hit.

Since you might be a fan of template-based programming and similar
compile time endeavors, I should also make the explicit note that static
polymorphism does not have the same limitations. While in dynamic
polymorphism, one of the design axes (types and operations) needs to be
fixed, in static polymorphism, both pieces of information are available at
compile-time. Therefore, both aspects can be extended easily (if you do it
properly).5



GUIDELINE 15: DESIGN FOR THE ADDITION OF TYPES
OR OPERATIONS

Be aware of the strengths and weaknesses of different
programming paradigms.

Exploit the strengths of a paradigm, but avoid the weaknesses.

Understand the choice between the addition of types or operations
in dynamic polymorphism.

Prefer an object-oriented solution when you primarily want to add
types.

Prefer a procedural/functional solution when you primarily want to
add operations.

Guideline 16: Use Visitor to Extend
Operations
In the previous section, you saw that the strength of object-oriented
programming (OOP) is the addition of types and its weakness is the
addition of operations. Of course, OOP has an answer to that weakness: the
Visitor design pattern.

The Visitor design pattern is one of the classic design patterns described by
the Gang of Four (GoF). Its focus is on allowing you to frequently add
operations instead of types. Allow me to explain the Visitor design pattern
using the previous toy example: the drawing of shapes.

In Figure 4-1, you see the Shape hierarchy. The Shape class is again the
base class for a certain number of concrete shapes. In this example, there
are only the two classes, Circle and Square, but of course it’s possible to
have more shapes. In addition, you might imagine Triangle, Rectangle,
or Ellipse classes.



Figure 4-1. The UML representation of a shape hierarchy with two derived classes ( Circle and
Square)

Analyzing the Design Issues
Let’s assume you are certain that you already have all the shapes you’ll ever
need. That is, you consider the set of shapes a closed set. What you are
missing, though, are additional operations. For instance, you’re missing an
operation to rotate the shapes. Also, you would like to serialize shapes, i.e.,
you would like to convert the instance of a shape into bytes. And of course,
you want to draw shapes. In addition, you want to enable anybody to add
new operations. Therefore, you expect an open set of operations.

Every new operation now requires you to insert a new virtual function into
the base class. Unfortunately, that can be troublesome in different ways.
Most obviously, not everyone is able to add a virtual function to the Shape
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base class. I, for instance, can’t simply go ahead and change your code.
Therefore, this approach would not meet the expectation that everyone can
add operations. While you can already see this as a final negative verdict,
let’s still analyze the problem of virtual functions in more detail.

If you decide to use a pure virtual function, you would have to implement
the function in every derived class. For your own derived types, you could
shrug this off as just a little bit of extra effort. But you might also cause
extra work for other people who have created a shape by inheriting from the
Shape base class.  And that is very much expected, since this is the strength
of OOP: anyone can add new types easily. Since this is to be expected, it
may be a reason to not use a pure virtual function.

As an alternative, you could introduce a regular virtual function, i.e., a
virtual function with a default implementation. While a default behavior for
a rotate() function sounds like a very reasonable idea, a default
implementation for a serialize() function doesn’t sound easy at all. I
admit that I would have to think hard about how to implement such a
function. You might now suggest just throwing an exception as the default.
However, this means that derived classes must again implement the missing
behavior, and it would be a pure virtual function in disguise, or a clear
violation of the Liskov Substitution Principle (see “Guideline 6: Adhere to
the Expected Behavior of Abstractions”).

Either way, adding a new operation into the Shape base class is difficult or
not even possible at all. The underlying reason is that adding virtual
functions violates the OCP. If you really need to add new operations
frequently, then you should design so that the extension of operations is
easy. That is what the Visitor design pattern tries to achieve.

The Visitor Design Pattern Explained
The intent of the Visitor design pattern is to enable the addition of
operations.
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THE VISITOR DESIGN PATTERN
Intent: “Represent an operation to be performed on the elements of an object structure.
Visitor lets you define a new operation without changing the classes of the elements on
which it operates.”

In addition to the Shape hierarchy, I now introduce the ShapeVisitor
hierarchy on the lefthand side of Figure 4-2. The ShapeVisitor base class
represents an abstraction of shape operations. For that reason, you could
argue that ShapeOperation might be a better name for that class. It is
beneficial, however, to apply “Guideline 14: Use a Design Pattern’s Name
to Communicate Intent”. The name Visitor will help others understand the
design.
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Figure 4-2. The UML representation of the Visitor design pattern

The ShapeVisitor base class comes with one pure virtual visit()
function for every concrete shape in the Shape hierarchy:

 
class ShapeVisitor 
{ 
 public: 
   virtual ~ShapeVisitor() = default; 
 
   virtual void visit( Circle const&, /*...*/ ) const = 0;   
   virtual void visit( Square const&, /*...*/ ) const = 0;   
   // Possibly more visit() functions, one for each concrete shape 
}; 

In this example, there is one visit() function for Circle ( ) and one for
Square ( ). Of course, there could be more visit() functions—for
instance, one for Triangle, one for Rectangle, and one for Ellipse—
given that these are also classes derived from the Shape base class.

With the ShapeVisitor base class in place, you can now add new
operations easily. All you have to do to add an operation is add a new
derived class. For instance, to enable rotating shapes, you can introduce the
Rotate class and implement all visit() functions. To enable drawing
shapes, all you have to do is introduce a Draw class:

class Draw : public ShapeVisitor 
{ 
 public: 
   void visit( Circle const& c, /*...*/ ) const override; 
   void visit( Square const& s, /*...*/ ) const override; 
   // Possibly more visit() functions, one for each concrete shape 
};

And you can think about introducing multiple Draw classes, one for each
graphics library you need to support. You can do that easily, because you
don’t have to modify any existing code. It is only necessary to extend the
ShapeVisitor hierarchy by adding new code. Therefore, this design fulfills
the OCP with respect to adding operations.



To completely understand the software design characteristics of Visitor, it is
important to understand why the Visitor design pattern is able to fulfill the
OCP. The initial problem was that every new operation required a change to
the Shape base class. Visitor identifies the addition of operations as a
variation point. By extracting this variation point, i.e., by making this a
separate class, you follow the Single-Responsibility Principle (SRP): Shape
does not have to change for every new operation. This avoids frequent
modifications of the Shape hierarchy and enables the easy addition of new
operations. The SRP therefore acts as an enabler for the OCP.

To use visitors (classes derived from the ShapeVisitor base class) on
shapes, you now have to add one last function to the Shape hierarchy: the
accept() function ( ): 

 
class Shape 
{ 
 public: 
   virtual ~Shape() = default; 
   virtual void accept( ShapeVisitor const& v ) = 0;   
   // ... 
}; 

The accept() function is introduced as a pure virtual function in the base
class and therefore has to be implemented in every derived class (  and ):

 
class Circle : public Shape 
{ 
 public: 
   explicit Circle( double radius ) 
      : radius_( radius ) 
   { 
      /* Checking that the given radius is valid */ 
   } 
 
   void accept( ShapeVisitor const& v ) override { v.visit( *this ); }   
 
   double radius() const { return radius_; } 
 
 private: 
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   double radius_; 
}; 
 
 
class Square : public Shape 
{ 
 public: 
   explicit Square( double side ) 
      : side_( side ) 
   { 
      /* Checking that the given side length is valid */ 
   } 
 
   void accept( ShapeVisitor const& v ) override { v.visit( *this ); }   
 
   double side() const { return side_; } 
 
 private: 
   double side_; 
}; 

The implementation of accept() is easy; however, it merely needs to call
the corresponding visit() function on the given visitor based on the type
of the concrete Shape. This is achieved by passing the this pointer as an
argument to visit(). Thus, the implementation of accept() is the same in
each derived class, but due to a different type of the this pointer, it will
trigger a different overload of the visit() function in the given visitor.
Therefore, the Shape base class cannot provide a default implementation.

This accept() function can now be used where you need to perform an
operation. For instance, the drawAllShapes() function uses accept() to
draw all shapes in a given vector of shapes:

void drawAllShapes( std::vector<std::unique_ptr<Shape>> const& shapes ) 
{ 
   for( auto const& shape : shapes ) 
   { 
      shape->accept( Draw{} ); 
   } 
}



With the addition of the accept() function, you are now able to extend
your Shape hierarchy easily with operations. You have now designed for an
open set of operations. Amazing! However, there is no silver bullet, and
there is no design that always works. Every design comes with advantages,
but also disadvantages. So before you start to celebrate, I should tell you
about the shortcomings of the Visitor design pattern to give you the
complete picture.

Analyzing the Shortcomings of the Visitor Design
Pattern
The Visitor design pattern is unfortunately far from perfect. This should be
expected, considering Visitor is a workaround for an intrinsic OOP
weakness, instead of building on OOP strengths.

The first disadvantage is a low implementation flexibility. It becomes
obvious if you consider the implementation of a Translate visitor. The
Translate visitor needs to move the center point of each shape by a given
offset. For that, Translate needs to implement a visit() function for
every concrete Shape. Especially for Translate, you can imagine that the
implementation of these visit() functions would be very similar, if not
identical: there is nothing different about translating a Circle from
translating a Square. Still, you will need to write all visit() functions. Of
course, you would extract the logic from the visit() functions and
implement this in a third, separate function to minimize duplication
according to the DRY principle.  But unfortunately, the strict requirements
imposed by the base class do not give you the freedom to implement these
visit() functions as one. The result is some boilerplate code:

class Translate : public ShapeVisitor 
{ 
 public: 
   // Where is the difference between translating a circle and translating 
   // a square? Still you have to implement all virtual functions... 
   void visit( Circle const& c, /*...*/ ) const override; 
   void visit( Square const& s, /*...*/ ) const override; 
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   // Possibly more visit() functions, one for each concrete shape 
};

A similar implementation inflexibility is the return type of the visit()
functions. The decision on what the function returns is made in the
ShapeVisitor base class. Derived classes cannot change that. The usual
approach is to store the result in the visitor and access it later.

The second disadvantage is that with the Visitor design pattern in place, it
becomes difficult to add new types. Previously, we made the assumption
that you’re certain you have all the shapes you will ever need. This
assumption has now become a restriction. Adding a new shape in the Shape
hierarchy would require the entire ShapeVisitor hierarchy to be updated:
you would have to add a new pure virtual function to the ShapeVisitor
base class, and this virtual function would have to be implemented by all
derived classes. Of course, this comes with all the disadvantages we’ve
discussed before. In particular, you would force other developers to update
their operations.  Thus, the Visitor design pattern requires a closed set of
types and in exchange provides an open set of operations.

The underlying reason for this restriction is that there is a cyclic
dependency among the ShapeVisitor base class, the concrete shapes
(Circle, Square, etc.), and the Shape base class (see Figure 4-3).
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Figure 4-3. Dependency graph for the Visitor design pattern

The ShapeVisitor base class depends on the concrete shapes, since it
provides a visit() function for each of these shapes. The concrete shapes
depend on the Shape base class, since they have to fulfill all the
expectations and requirements of the base class. And the Shape base class
depends on the ShapeVisitor base class due to the accept() function.
Because of this cyclic dependency, we are now able to add new operations
easily (on a lower level of our architecture because of a dependency
inversion), but we cannot add types easily anymore (because that would
have to happen on the high level of our architecture). For that reason, we
call the classic Visitor design pattern Cyclic Visitor.

The third disadvantage is the intrusive nature of a visitor. To add a visitor to
an existing hierarchy, you need to add the virtual accept() to the base class
of that hierarchy. While this is often possible, it still suffers from the usual
problem of adding a pure virtual function to an existing hierarchy (see
“Guideline 15: Design for the Addition of Types or Operations”). If,
however, it’s not possible to add the accept() function, this form of Visitor
is not an option. If that’s the case, don’t worry: we will see another,
nonintrusive form of the Visitor design pattern in “Guideline 17: Consider
std::variant for Implementing Visitor”.

A fourth, albeit admittedly more obscure, disadvantage is that the accept()
function is inherited by deriving classes. If someone later adds another layer
of derived classes (and that someone might be you) and forgets to override
the accept() function, the visitor will be applied to the wrong type. And
unfortunately, you would not get any warning about this. This is just more
evidence that adding new types has become more difficult. A possible
solution for this would be to declare the Circle and Square classes as
final, which would, however, limit future extensions.

“Wow, that’s a lot of disadvantages. Are there any more?” Yes,
unfortunately there are two more. The fifth disadvantage is obvious when
we consider that for every operation, we’re now required to call two virtual
functions. Initially, we don’t know about either the type of operation or the



type of shape. The first virtual function is the accept() function, which is
passed an abstract ShapeVisitor. The accept() function now resolves the
concrete type of shape. The second virtual function is the visit() function,
which is passed a concrete type of Shape. The visit() function now
resolves the concrete type of the operation. This so-called double dispatch
is unfortunately not free. On the contrary, performance-wise, you should
consider the Visitor design pattern as rather slow. I will provide some
performance numbers in the next guideline.

While talking about performance, I should also mention two other aspects
that have a negative impact on performance. First, we usually allocate every
single shape and visitor individually. Consider the following main()
function:

 
int main() 
{ 
   using Shapes = std::vector< std::unique_ptr<Shape> >; 
 
   Shapes shapes; 
 
   shapes.emplace_back( std::make_unique<Circle>( 2.3 ) );   
   shapes.emplace_back( std::make_unique<Square>( 1.2 ) );   
   shapes.emplace_back( std::make_unique<Circle>( 4.1 ) );   
 
   drawAllShapes( shapes ); 
 
   // ... 
 
   return EXIT_SUCCESS; 
} 

In this main() function, all allocations happen by means of
std::make_unique() ( , , and ). These many, small allocations cost
runtime on their own and will in the long run cause memory
fragmentation.  Also, the memory may be laid out in an unfavorable,
cache-unfriendly way. As a consequence, we usually use pointers to work
with the resulting shapes and visitors. The resulting indirections make it
much harder for a compiler to perform any kind of optimization and will
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show up in performance benchmarks. However, to be honest, this is not a
Visitor-specific problem, but these two aspects are quite common to OOP in
general.

The last disadvantage of the Visitor design pattern is that experience has
proven this design pattern to be rather hard to fully understand and
maintain. This is a rather subjective disadvantage, but the complexity of the
intricate interplay of the two hierarchies often feels more like a burden than
a real solution.

In summary, the Visitor design pattern is the OOP solution to allow for the
easy extension of operations instead of types. That is achieved by
introducing an abstraction in the form of the ShapeVisitor base class,
which enables you to add operations on another set of types. While this is a
unique strength of Visitor, it unfortunately comes with several deficiencies:
implementation inflexibilities in both inheritance hierarchies due to a strong
coupling to the requirements of the base classes, rather bad performance,
and the intrinsic complexity of Visitor make it a rather unpopular design
pattern.

If you’re now undecided whether or not to use a classic Visitor, take the
time to read the next section. I will show you a different way to implement
a Visitor—a solution that will much more likely be to your satisfaction.

GUIDELINE 16: USE VISITOR TO EXTEND OPERATIONS

Keep in mind that it’s difficult to add a new operation in an
existing inheritance hierarchy.

Apply the Visitor design pattern with the intent of enabling the
easy addition of operations.

Be aware of the shortcomings of the Visitor design pattern.



Guideline 17: Consider std::variant for
Implementing Visitor
In “Guideline 16: Use Visitor to Extend Operations”, I introduced you to
the Visitor design pattern. I imagine that you did not immediately fall in
love: while Visitor most certainly has a couple of unique properties, it is
also a rather complex design pattern with some strong internal coupling and
performance deficiencies. No, definitely not love! However, don’t worry,
the classic form is not the only way you can implement the Visitor design
pattern. In this section, I would like to introduce you to a different way to
implement Visitor. And I am certain that this approach will be much more
to your liking.

Introduction to std::variant
At the beginning of this chapter, we talked about the strengths and
weaknesses of the different paradigms (OOP versus procedural
programming). In particular, we talked about the fact that procedural
programming was particularly good at adding new operations to an existing
set of types. So instead of trying to find workarounds in OOP, how about
we exploit the strength of procedural programming? No, don’t worry; of
course I’m not suggesting a return to our initial solution. That approach was
just too error prone. Instead I’m talking about std::variant:

 
#include <cstdlib> 
#include <iostream> 
#include <string> 
#include <variant> 
 
struct Print   
{ 
   void operator()( int value ) const 
      { std::cout << "int: " << value << '\n'; } 
   void operator()( double value ) const 
      { std::cout << "double: " << value << '\n'; } 
   void operator()( std::string const& value ) const 
      { std::cout << "string: " << value << '\n'; } 



}; 
 
int main() 
{ 
   // Creates a default variant that contains an 'int' initialized to 0 
   std::variant<int,double,std::string> v{};   
 
   v = 42;        // Assigns the 'int' 42 to the variant   
   v = 3.14;      // Assigns the 'double' 3.14 to the variant   
   v = 2.71F;     // Assigns a 'float', which is promoted to 'double'   
   v = "Bjarne";  // Assigns the string literal 'Bjarne' to the variant   
   v = 43;        // Assigns the 'int' 43 to the variant   
 
   int const i = std::get<int>(v);  // Direct access to the value   
 
   int* const pi = std::get_if<int>(&v);  // Direct access to the value   
 
   std::visit( Print{}, v );  // Applying the Print visitor   
 
   return EXIT_SUCCESS; 
} 

Since you might not have had the pleasure of being introduced to the
C++17 std::variant yet, allow me to give you an introduction in a
nutshell, just in case. A variant represents one of several alternatives. The
variant at the beginning of the main() function in the code example can
contain an int, a double, or an std::string ( ). Note that I said or: a
variant can contain only one of these three alternatives. It is never several of
them, and under usual circumstances, it should never contain nothing. For
that reason, we call a variant a sum type: the set of possible states is the sum
of possible states of the alternatives.

A default variant is also not empty. It is initialized to the default value of
the first alternative. In the example, a default variant contains an integer of
value 0. Changing the value of a variant is simple: you can just assign new
values. For instance, we can assign the value 42, which now means that the
variant stores an integer of value 42 ( ). If we subsequently assign the
double 3.14, then the variant will store a double of value 3.14 ( ). If you
ever want to assign a value of a type that is not one of the possible
alternatives, the usual conversion rules apply. For instance, if you want to



assign a float, based on the regular conversion rules it would be promoted
to a double ( ).

To store the alternatives, the variant provides just enough internal buffer to
hold the largest of the alternatives. In our case, the largest alternative is the
std::string, which is usually between 24 and 32 bytes (depending on the
used implementation of the Standard Library). Thus, when you assign the
string literal "Bjarne", the variant will first clean up the previous value
(there isn’t much to do; it’s just a double) and then, since it is the only
alternative that works, construct the std::string in place inside its own
buffer ( ). When you change your mind and assign the integer 43 ( ), the
variant will properly destroy the std::string by means of its destructor
and reuse the internal buffer for the integer. Marvelous, is it not? The
variant is type safe and always properly initialized. What more could we
ask for?

Well, of course you want to do something with the values inside the variant.
It would not be of any use if we just store the value. Unfortunately, you
cannot simply assign a variant to any other value, e.g., an int, to get your
value back. No, accessing the value is a little more complicated. There are
several ways to access the stored values, the most direct approach being
std::get() ( ). With std::get() you can query for a value of a particular
type. If the variant contains a value of that type, it returns a reference to it.
If it does not, it throws the std::bad_variant_exception. That seems to
be a pretty rude response, given that you have asked nicely. But we should
probably be happy that the variant does not pretend to hold some value
when it indeed does not. At least it is honest. There is a nicer way in the
form of std::get_if() ( ). In comparison to std::get(),
std::get_if() does not return a reference but a pointer. If you request a
type that the std::variant currently does not hold, it doesn’t throw an
exception but instead returns a nullptr. However, there is a third way, a
way that is particularly interesting for our purposes: std::visit() ( ).
std::visit() allows you to perform any operation on the stored value. Or
more precisely, it allows you to pass a custom visitor to perform any
operation on the stored value of a closed set of types. Sound familiar?



The Print visitor ( ) that we pass as the first argument must provide a
function call operator (operator()) for every possible alternative. In this
example, that is fulfilled by providing three operator()s: one for int, one
for double, and one for std::string. It is particularly noteworthy that
Print does not have to inherit from any base class, and it does not have any
virtual functions. Therefore, there is no strong coupling to any
requirements. If we wanted to, we could also collapse the function call
operators for int and double into one, since an int can be converted to a
double:

struct Print 
{ 
   void operator()( double value ) const 
      { std::cout << "int or double: " << value << '\n'; } 
   void operator()( std::string const& value ) const 
      { std::cout << "string: " << value << '\n'; } 
};

While the question about which version we should prefer is not of particular
interest for us at this moment, you’ll notice that we have a lot of
implementation flexibility. There is only a very loose coupling based on the
convention that for every alternative there needs to be an operator(),
regardless of the exact form. We do not have a Visitor base class anymore
that forces us to do things in a very specific way. We also do not have any
base class for the alternatives: we are free to use fundamental types such as
int and double, as well as arbitrary class types such as std::string. And
perhaps most importantly, anyone can easily add new operations. No
existing code needs to be modified. With this, we can argue that this is a
procedural solution, just much more elegant than the initial enum-based
approach, which used a base class to hold a discriminator.

Refactoring the Drawing of Shapes as a Value-Based,
Nonintrusive Solution
With these properties, std::variant is perfectly suited for our drawing
example. Let’s re-implement the drawing of shapes with std::variant.



First, we refactor the Circle and Square classes:

//---- <Circle.h> ---------------- 
 
#include <Point.h> 
 
class Circle 
{ 
 public: 
   explicit Circle( double radius ) 
      : radius_( radius ) 
   { 
      /* Checking that the given radius is valid */ 
   } 
 
   double radius() const { return radius_; } 
   Point  center() const { return center_; } 
 
 private: 
   double radius_; 
   Point center_{}; 
}; 
 
 
//---- <Square.h> ---------------- 
 
#include <Point.h> 
 
class Square 
{ 
 public: 
   explicit Square( double side ) 
      : side_( side ) 
   { 
      /* Checking that the given side length is valid */ 
   } 
 
   double side  () const { return side_; } 
   Point  center() const { return center_; } 
 
 private: 
   double side_; 
   Point center_{}; 
};



Both Circle and Square are significantly simplified: no more Shape base
class, no more need to implement any virtual functions—in particular the
accept() function. Thus, this Visitor approach is nonintrusive: this form of
Visitor can be easily added to existing types! And there is no need to
prepare these classes for any upcoming operations. We can focus entirely on
implementing these two classes as what they are: geometric primitives.

The most beautiful part of the refactoring, however, is the actual use of
std::variant:

 
//---- <Shape.h> ---------------- 
 
#include <variant> 
#include <Circle.h> 
#include <Square.h> 
 
using Shape = std::variant<Circle,Square>;   
 
 
//---- <Shapes.h> ---------------- 
 
#include <vector> 
#include <Shape.h> 
 
using Shapes = std::vector<Shape>;   

Since our closed set of types is a set of shapes, variant will now contain
either a Circle or Square. And what is a good name for an abstraction of a
set of types that represent shapes? Well…Shape ( ). Instead of a base class
that abstracts from the actual type of shape, std::variant now acquires
this task. If this is the first time you’ve seen that, you are probably
completely amazed. But wait, there is more: this also means that we can
now turn our back on std::unique_ptr. Remember: the only reason we
used (smart) pointers was to enable us to store different kinds of shapes in
the same vector. But now that std::variant enables us to do the same, we
can simply store variant objects inside a single vector ( ).

With this functionality in place, we can write custom operations on shapes.
We’re still interested in drawing shapes. For that purpose, we now



implement the Draw visitor:

//---- <Draw.h> ---------------- 
 
#include <Shape.h> 
#include /* some graphics library */ 
 
struct Draw 
{ 
   void operator()( Circle const& c ) const 
      { /* ... Implementing the logic for drawing a circle ... */ } 
   void operator()( Square const& s ) const 
      { /* ... Implementing the logic for drawing a square ... */ } 
};

Again, we are following the expectation to implement one operator() for
every alternative: one for Circle and one for Square. But this time we
have a choice. There is no need to implement any base class, and for that
reason, no need to override any virtual function. Therefore, there is no need
to implement exactly one operator() for every alternative. While in this
example it feels reasonable to have two functions, we have the option to
combine the two operator()s into one function. We also have a choice
with respect to the return type of the operation. We can locally decide what
we should return, and it is not a base class that, independent from the
specific operation, makes a global decision. Implementation flexibility.
Loose coupling. Amazing!

The last piece of the puzzle is the drawAllShapes() function:

//---- <DrawAllShapes.h> ---------------- 
 
#include <Shapes.h> 
 
void drawAllShapes( Shapes const& shapes ); 
 
 
//---- <DrawAllShapes.cpp> ---------------- 
 
#include <DrawAllShapes.h> 
 
void drawAllShapes( Shapes const& shapes ) 
{ 



   for( auto const& shape : shapes ) 
   { 
      std::visit( Draw{}, shape ); 
   } 
}

The drawAllShapes() function is refactored to make use of
std::visit(). In this function, we now apply the Draw visitor onto all
variants stored in a vector.

The job of std::visit() is to perform the necessary type dispatch for you.
If the given std::variant contains a Circle, it will call the
Draw::operator() for circles. Otherwise it will call the
Draw::operator() for squares. If you wanted to, you could manually
implement the same dispatch with std::get_if():

void drawAllShapes( Shapes const& shapes ) 
{ 
   for( auto const& shape : shapes ) 
   { 
      if( Circle* circle = std::get_if<Circle>(&shape) ) { 
         // ... Drawing a circle 
      } 
      else if( Square* square = std::get_if<Square>(&shape) ) { 
         // ... Drawing a square 
      } 
   } 
}

I know what you’re thinking: “Nonsense! Why would I ever want to do
that? That would result in the same maintenance nightmare as an enum-
based solution.” I completely agree with you: from a software design
perspective, this would be a terrible idea. Still, and I have to say that this is
difficult to admit in the context of this book, there may be a good reason to
do that (sometimes): performance. I know, now I’ve piqued your interest,
but since we are almost ready to talk about performance anyway, allow me
to defer this discussion for just a few paragraphs. I will come back to this, I
promise!



With all of these details in place, we can finally refactor the main()
function. But there isn’t a lot of work to do: instead of creating circles and
squares by means of std::make_unique(), we simply create circles and
squares directly, and add them to the vector. This works thanks to the
nonexplicit constructor of variant, which allows implicit conversion of any
of the alternatives:

//---- <Main.cpp> ---------------- 
 
#include <Circle.h> 
#include <Square.h> 
#include <Shapes.h> 
#include <DrawAllShapes.h> 
 
int main() 
{ 
   Shapes shapes; 
 
   shapes.emplace_back( Circle{ 2.3 } ); 
   shapes.emplace_back( Square{ 1.2 } ); 
   shapes.emplace_back( Circle{ 4.1 } ); 
 
   drawAllShapes( shapes ); 
 
   return EXIT_SUCCESS; 
}

The end result of this value-based solution is stunningly fascinating: no
base classes anywhere. No virtual functions. No pointers. No manual
memory allocations. Things are as straightforward as they could be, and
there is very little boilerplate code. Additionally, despite the fact that the
code looks very different from the previous solutions, the architectural
properties are identical: everyone is able to add new operations without the
need to modify existing code (see Figure 4-4). Therefore, we still fulfill the
OCP in respect to adding operations.





Figure 4-4. Dependency graph for the std::variant solution

As already mentioned, this Visitor approach is nonintrusive. From an
architectural point of view, this gives you another, significant advantage
compared to the classic Visitor. If you compare the dependency graph of the
classic Visitor (see Figure 4-3) to the dependency graph of the
std::variant solution (see Figure 4-4), you will see that the dependency
graph for the std::variant solution has a second architectural boundary.
This means that there is no cyclic dependency between std::variant and
its alternatives. I should repeat that to emphasize its significance: there is no
cyclic dependency between std::variant and its alternatives! What may
look like a little detail is actually a huge architectural advantage. HUGE! As
an example, you could create an abstraction based on std::variant on the
fly:

 
//---- <Shape.h> ---------------- 
 
#include <variant> 
#include <Circle.h> 
#include <Square.h> 
 
using Shape = std::variant<Circle,Square>;   
 
 
//---- <SomeHeader.h> ---------------- 
 
#include <Circle.h> 
#include <Ellipse.h> 
#include <variant> 
 
using RoundShapes = std::variant<Circle,Ellipse>;   
 
 
//---- <SomeOtherHeader.h> ---------------- 
 
#include <Square.h> 
#include <Rectangle.h> 
#include <variant> 
 
using AngularShapes = std::variant<Square,Rectangle>;   



In addition to the Shape abstraction we have already created ( ), you can
create the std::variant for all round shapes ( ), and you can create a
std::variant for all angular shapes ( ), both possibly far away from the
Shape abstraction. You can easily do this because there is no need to derive
from multiple Visitor base classes. On the contrary, the shape classes would
be unaffected. Thus, the fact that the std::variant solution is nonintrusive
is of the highest architectural value!

Performance Benchmarks
I know how you feel right now. Yes, that’s what love at first sight feels like.
But believe it or not, there’s more. There is one topic that we haven’t
discussed yet, a topic that is dear to every C++ developer, and that is, of
course, performance. While this is not really a book about performance, it’s
still worth mentioning that you do not have to worry about the performance
of std::variant. I can already promise you that it’s fast.

Before I show you the benchmark results, however, allow me a couple of
comments about the benchmarks. Performance—sigh. Unfortunately,
performance is always a difficult topic. There is always someone who
complains about performance. For that reason, I would gladly just skip this
topic entirely. But then there are other people who complain about the
missing performance numbers. Sigh. Well, as it appears that there will
always be some complaints, and since the results are just too good to miss, I
will show you a couple of benchmark results. But there are two conditions:
first, you will not consider them to be quantitative values that represent the
absolute truth but only qualitative values that point in the right direction.
And second, you will not launch a protest in front of my house because I
didn’t use your favorite compiler, or compilation flag, or IDE. Promise?

You: nodding and vowing to not complain about trivial things!

OK, great, then Table 4-2 gives you the benchmark results.



Table 4-2. Benchmark results for different Visitor
implementations

Visitor implementation GCC 11.1 Clang 11.1

Classic Visitor design pattern 1.6161 s 1.8015 s

Object-oriented solution 1.5205 s 1.1480 s

Enum solution 1.2179 s 1.1200 s

std::variant (with std::visit()) 1.1992 s 1.2279 s

std::variant (with std::get_if()) 1.0252 s 0.6998 s

To make sense of these numbers, I should give you a little more
background. To make the scenario a little more realistic, I used not only
circles and squares but also rectangles and ellipses. Then I ran 25,000
operations on 10,000 randomly created shapes. Instead of drawing these
shapes, I updated the center point by random vectors.  This is because this
translate operation is very cheap and allows me to better show the intrinsic
overhead of all these solutions (such as indirections and the overhead of
virtual function calls). An expensive operation, such as draw(), would
obscure these details and might give the impression that all approaches are
pretty similar. I used both GCC 11.1 and Clang 11.1, and for both compilers
I added only the -O3 and -DNDEBUG compilation flags. The platform I used
was macOS Big Sur (version 11.4) on an 8-Core Intel Core i7 with 3.8 GHz
and 64 GB of main memory.

The most obvious takeaway from the benchmark results is that the variant
solution is far more efficient than the classic Visitor solution. This should
not come as a surprise: due to the double dispatch, the classic Visitor
implementation contains a lot of indirection and therefore is also hard to
optimize. Also, the memory layout of the shape objects is perfect: in
comparison to all other solutions, including the enum-based solution, all
shapes are stored contiguously in memory, which is the most cache-friendly
layout you could choose. The second takeaway is that std::variant is
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indeed pretty efficient, if not surprisingly efficient. However, it is surprising
that efficiency heavily depends on whether we use std::get_if() or
std::visit() (I promised to get back to this). Both GCC and Clang
produce much slower code when using std::visit(). I assume that
std::visit() is not perfectly implemented and optimized at that point.
But, as I said before, performance is always difficult, and I don’t try to
venture any deeper into this mystery.

Most importantly, the beauty of std::variant is not messed up by bad
performance numbers. On the contrary: the performance results help
intensify your newfound relationship with std::variant.

Analyzing the Shortcomings of the std::variant Solution
While I don’t want to endanger this relationship, I consider it my duty to
also point out a couple of disadvantages that you will have to deal with if
you use the solution based on std::variant.

First, I should again point out the obvious: as a solution similar to the
Visitor design pattern and based on procedural programming,
std::variant is also focused on providing an open set of operations. The
downside is that you will have to deal with a closed set of types. Adding
new types will cause problems very similar to the problems we experienced
with the enum-based solution in “Guideline 15: Design for the Addition of
Types or Operations”. First of all, you would have to update the variant
itself, which might trigger a recompilation of all code using the variant type
(remember updating the enum?). Also, you would have to update all
operations and add the potentially missing operator() for the new
alternative(s). The good thing is that the compiler would complain if one of
these operators is missing. The bad thing is that the compiler will not
produce a nice, legible error message, but something that is a little closer to
the mother of all template-related error messages. Altogether it really feels
pretty much like our previous experience with the enum-based solution.

A second potential problem that you should keep in mind is that you should
avoid putting types of very different sizes inside a variant. If at least one of
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the alternatives is much bigger than the others, you might waste a lot of
space storing many of the small alternatives. This would negatively affect
performance. A solution would be to not store large alternatives directly but
to store them behind pointers, via Proxy objects, or by using the Bridge
design pattern.  Of course, this would introduce an indirection, which also
costs performance. Whether this is a disadvantage in terms of performance
in comparison to storing values of different size is something that you will
have to benchmark.

Last but not least, you should always be aware of the fact that a variant can
reveal a lot of information. While it represents a runtime abstraction, the
contained types are still plainly visible. This can create physical
dependencies on the variant, i.e., when modifying one of the alternative
types, you might have to recompile any depending code. The solution
would, again, be to store pointers or Proxy objects instead, which would
hide implementation details. Unfortunately, that would also impact
performance, since a lot of the performance gains come from the compiler
knowing about the details and optimizing for them accordingly. Thus, there
is always a compromise between performance and encapsulation.

Despite these shortcomings, in summary, std::variant proves to be a
wonderful replacement for the OOP-based Visitor design pattern. It
simplifies the code a lot, removes almost all boilerplate code and
encapsulates the ugly and maintenance-intensive parts, and comes with
superior performance. In addition, std::variant proves to be another
great example of the fact that a design pattern is about an intent, not about
implementation details.
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GUIDELINE 17: CONSIDER STD::VARIANT FOR
IMPLEMENTING VISITOR

Understand the architectural similarity between the classic Visitor
and std::variant.

Be aware of the advantages of std::variant in comparison to an
object-oriented Visitor solution.

Use the nonintrusive nature of std::variant to create
abstractions on the fly.

Keep in mind the shortcomings of std::variant and avoid it
when it’s not appropriate.

Guideline 18: Beware the Performance of
Acyclic Visitor
As you saw in “Guideline 15: Design for the Addition of Types or
Operations”, you have to make a decision when using dynamic
polymorphism: you can support an open set of types or an open set of
operations. You cannot have both. Well, I specifically said that, to my best
knowledge, having both is not actually impossible but usually impractical.
To demonstrate, allow me to introduce you to yet another variation of the
Visitor design pattern: the Acyclic Visitor.

In “Guideline 16: Use Visitor to Extend Operations”, you saw that there is a
cyclic dependency among the key players of the Visitor design pattern: the
Visitor base class depends on the concrete types of shapes (Circle,
Square, etc.), the concrete types of shapes depend on the Shape base class,
and the Shape base class depends on the Visitor base class. Due to that
cyclic dependency, which locks all those key players onto one level in the
architecture, it is hard to add new types to a Visitor. The idea of the Acyclic
Visitor is to break this dependency.
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Figure 4-5 shows a UML diagram for the Acyclic Visitor. In comparison to
the GoF Visitor, while there are only small differences on the righthand side
of the picture, there are some fundamental changes on the lefthand side.
Most importantly, the Visitor base class has been split into several base
classes: the AbstractVisitor base class and one base class for each
concrete type of shape (in this example, Circle Visi tor and
SquareVisitor). All visitors have to inherit from the AbstractVisitor
base class but now also have the option to inherit from the shape-specific
visitor base classes. If an operation wants to support circles, it inherits from
the Circle Visi tor base class and implements the visit() function for
Circle. If it does not want to support circles, it simply does not inherit
from CircleVisitor.





Figure 4-5. The UML representation of an Acyclic Visitor

The following code snippet shows a possible implementation of the
Visitor base classes:

 
//---- <AbstractVisitor.h> ---------------- 
 
class AbstractVisitor   
{ 
 public: 
   virtual ~AbstractVisitor() = default; 
}; 
 
 
//---- <Visitor.h> ---------------- 
 
template< typename T > 
class Visitor   
{ 
 protected: 
   ~Visitor() = default; 
 
 public: 
   virtual void visit( T const& ) const = 0; 
}; 

The AbstractVisitor base class is nothing but an empty base class with a
virtual destructor ( ). No other function is necessary. As you will see,
AbstractVisitor serves only as a general tag to identify visitors and
doesn’t have to provide any operation itself. In C++ we tend to implement
the shape-specific visitor base classes in the form of a class template ( ).
The Visitor class template is parameterized on a specific shape type and
introduces the pure virtual visit() for that particular shape.

In the implementation of our Draw visitor, we would now inherit from three
base classes: the AbstractVisitor, from Visitor<Circle> and
Visitor<Square>, since we want to support both Circle and Square:

class Draw : public AbstractVisitor 
           , public Visitor<Circle> 
           , public Visitor<Square> 



{ 
 public: 
   void visit( Circle const& c ) const override 
      { /* ... Implementing the logic for drawing a circle ... */ } 
   void visit( Square const& s ) const override 
      { /* ... Implementing the logic for drawing a square ... */ } 
};

This choice of implementation breaks the cyclic dependency. As Figure 4-6
demonstrates, the high level of the architecture does not depend on the
concrete shape types anymore. Both the shapes (Circle and Square) and
the operations are now on the low level of the architectural boundary. We
can now add both types and operations.

At this point, you’re looking very suspiciously, almost accusingly, in my
direction. Didn’t I say that having both would not be possible? Obviously, it
is possible, right? Well, once again, I didn’t claim that it was impossible. I
rather said that this might be impractical. Now that you’ve seen the
advantage of an Acyclic Visitor, let me show you the downsides of this
approach.





Figure 4-6. Dependency graph for the Acyclic Visitor

First, let’s take a look at the implementation of the accept() function in
Circle:

 
//---- <Circle.h> ---------------- 
 
class Circle : public Shape 
{ 
 public: 
   explicit Circle( double radius ) 
      : radius_( radius ) 
   { 
      /* Checking that the given radius is valid */ 
   } 
 
   void accept( AbstractVisitor const& v ) override {   
      if( auto const* cv = dynamic_cast<Visitor<Circle> const*>(&v) ) {   
         cv->visit( *this );   
      } 
   } 
 
   double radius() const { return radius_; } 
   Point  center() const { return center_; } 
 
 private: 
   double radius_; 
   Point center_{}; 
}; 

You might have noticed the one small change in the Shape hierarchy: the
virtual accept() function now accepts an AbstractVisitor ( ). You also
remember that the AbstractVisitor does not implement any operation on
its own. Therefore, instead of calling a visit() function on the
AbstractVisitor, the Circle determines if the given visitor supports
circles by performing a dynamic_cast to Visitor<Circle> ( ). Note that
it performs a pointer conversion, which means that the dynamic_cast
returns either a valid pointer to a Visitor<Circle> or a nullptr. If it
returns a valid pointer to a Visitor<Circle>, it calls the corresponding
visit() function ( ).



While this approach most certainly works and is part of breaking the cyclic
dependency of the Visitor design pattern, a dynamic_cast always leaves a
bad feeling. A dynamic_cast should always feel a little suspicious,
because, if used badly, it can break an architecture. That would happen if
we perform a cast from within the high level of the architecture to
something that resides in the low level of the architecture.  In our case, it’s
actually OK to use it, since the use happens on the low level of our
architecture. Thus, we do not break the architecture by inserting knowledge
about a lower level into the high level.

The real deficiency lies in the runtime penalty. When running the same
benchmark as in “Guideline 17: Consider std::variant for Implementing
Visitor” for an Acyclic Visitor, you realize that the runtime is almost one
order of magnitude above the runtime of a Cyclic Visitor (see Table 4-3).
The reason is that a dynamic_cast is slow. Very slow. And it is particularly
slow for this application. What we’re doing here is a cross-cast. We aren’t
simply casting down to a particular derived class, but we are casting into
another branch of the inheritance hierarchy. This cross cast, followed by a
virtual function call, is significantly more costly than a simple downcast.

Table 4-3. Performance results for different Visitor
implementations

Visitor implementation GCC 11.1 Clang 11.1

Acyclic Visitor 14.3423 s 7.3445 s

Cyclic Visitor 1.6161 s 1.8015 s

Object-oriented solution 1.5205 s 1.1480 s

Enum solution 1.2179 s 1.1200 s

std::variant (with std::visit()) 1.1992 s 1.2279 s

std::variant (with std::get()) 1.0252 s 0.6998 s
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While architecturally, an Acylic Visitor is a very interesting alternative,
from a practical point of view, these performance results might disqualify it.
This does not mean that you shouldn’t use it, but at least be aware that the
bad performance might be a very strong argument for another solution.

GUIDELINE 18: BEWARE THE PERFORMANCE OF
ACYCLIC VISITOR

Understand the architectural advantages of an Acyclic Visitor.

Be aware of the significant performance disadvantages of that
solution.

1  I can see you rolling your eyes! “Oh, that boring example again!” But do consider readers
who skipped Chapter 3. They’re now happy that they can read this section without a lengthy
explanation about the scenario.

2  Since C++11, we have scoped enumerations, sometimes also called class enumerations
because of the syntax enum class, at our disposal. This would, for instance, help the compiler
to better warn about incomplete switch statements. If you spotted this imperfection, you’ve
earned yourself a bonus point!

3  Scott Meyers, More Effective C++: 35 New Ways to Improve Your Programs and Designs,
Item 31 (Addison-Wesley, 1995).

4  Note that the mathematical notion of open and closed sets is something completely different.

5  As an example of design with static polymorphism, consider the algorithms from the Standard
Template Library (STL). You can easily add new operations, i.e., algorithms, but also easily
add new types that can be copied, sorted, etc.

6  It’s always hard to make predictions. But we usually have a pretty good idea about how our
codebase will evolve. In case you have no idea how things will move along, you should wait
for the first change or extension, learn from that, and make a more informed decision. This
philosophy is part of the commonly known YAGNI principle, which warns you about
overengineering; see also “Guideline 2: Design for Change”.

7  I wouldn’t be happy about it—perhaps I would even be seriously unhappy—but I probably
wouldn’t get angry. But your other colleagues? Worst case, you might be excluded from the
next team barbecue.

8  Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software.

https://oreil.ly/EP4eR
https://oreil.ly/nt4f4
https://oreil.ly/stXoI


9  accept() is the name used in the GoF book. It is the traditional name in the context of the
Visitor design pattern. Of course, you are free to use any other name, such as apply(). But
before you rename, consider the advice from “Guideline 14: Use a Design Pattern’s Name to
Communicate Intent”.

10  It really is advisable to extract the logic into a single function. The reason is change: if you
have to update the implementation later, you don’t want to perform the change multiple times.
That is the idea of the DRY (Don’t Repeat Yourself) principle. So please remember “Guideline
2: Design for Change”.

11  Consider the risk: this might exclude you from team barbecues for life!

12  Memory fragmentation is much more likely when you use std::make_unique(), which
encapsulates a call to new, instead of some special-purpose allocation schemes.

13  I am indeed using random vectors, created by means of std::mt19937 and
std::uniform_real_distribution, but only after proving to myself that the performance
does not change for GCC 11.1, and only slightly for Clang 11.1. Apparently, creating random
numbers is not particularly expensive in itself (at least on my machine). Since you promised to
consider these as qualitative results, we should be good.

14  There are other open source alternative implementations of variant. The Boost library
provides two implementations: Abseil provides a variant implementation, and it pays to take a
look at the implementation of Michael Park.

15  The Proxy pattern is another one of the GoF design patterns, which I unfortunately do not
cover in this book because of limited pages. I will, however, go into detail about the Bridge
design pattern; see “Guideline 28: Build Bridges to Remove Physical Dependencies”.

16  For more information on the Acyclic Visitor pattern by its inventor, see Robert C. Martin,
Agile Software Development: Principles, Patterns, and Practices (Pearson).

17  Please refer to “Guideline 9: Pay Attention to the Ownership of Abstractions” for a definition
of the terms high level and low level.

https://www.boost.org/
https://oreil.ly/FTtxY
https://oreil.ly/EXCYj


Chapter 5. The Strategy and
Command Design Patterns

This chapter is devoted to two of the most commonly used design patterns:
the Strategy design pattern and the Command design pattern. Most
commonly used indeed: the C++ Standard Library itself uses both of them
dozens of times, and it’s very likely that you have used them many times
yourself. Both of these can be considered fundamental tools for every
developer.

In “Guideline 19: Use Strategy to Isolate How Things Are Done”, I will
introduce you to the Strategy design pattern. I will demonstrate why this is
one of the most useful and most important design patterns and why you will
find it useful in many situations.

In “Guideline 20: Favor Composition over Inheritance”, we will take a look
at inheritance and why so many people complain about it. You will see that
it’s not bad per se, but like everything else, it has its benefits as well as
limitations. Most importantly, however, I will explain that many of the
classic design patterns do not draw their power from inheritance but rather
from composition.

In “Guideline 21: Use Command to Isolate What Things Are Done”, I will
introduce you to the Command design pattern. I will show you how to use
that design pattern productively, and also give you an idea of how
Command and Strategy compare.

In “Guideline 22: Prefer Value Semantics over Reference Semantics”, we
take a trip into the realm of reference semantics. However, we will find that
this realm is not particularly friendly and hospitable and makes us worry
about the quality of our code. Thus, we will resettle into the realm of value
semantics, which will welcome us with many benefits for our codebase.



In “Guideline 23: Prefer a Value-Based Implementation of Strategy and
Command”, we will revisit the Strategy and Command patterns. I will
demonstrate how we can apply the insight we gained in the realm of value
semantics and implement both design patterns based on std::function.

Guideline 19: Use Strategy to Isolate How
Things Are Done
Let’s imagine that you and your team are about to implement a new 2D
graphics tool. Among other requirements, it needs to deal with simple
geometric primitives, such as circles, squares, and so on, which need to be
drawn (see Figure 5-1).

Figure 5-1. The initial Shape inheritance hierarchy



A couple of classes have already been implemented, such as a Shape base
class, a Circle class, and a Square class:

 
//---- <Shape.h> ---------------- 
 
class Shape 
{ 
 public: 
   virtual ~Shape() = default; 
 
   virtual void draw( /*some arguments*/ ) const = 0;   
}; 
 
 
//---- <Circle.h> ---------------- 
 
#include <Point.h> 
#include <Shape.h> 
 
class Circle : public Shape 
{ 
 public: 
   explicit Circle( double radius ) 
      : radius_( radius ) 
   { 
      /* Checking that the given radius is valid */ 
   } 
 
   double radius() const { return radius_; } 
   Point  center() const { return center_; } 
 
   void draw( /*some arguments*/ ) const override;   
 
 private: 
   double radius_; 
   Point center_{}; 
}; 
 
 
//---- <Circle.cpp> ---------------- 
 
#include <Circle.h> 
#include /* some graphics library */ 
 
void Circle::draw( /*some arguments*/ ) const 



{ 
   // ... Implementing the logic for drawing a circle 
} 
 
 
//---- <Square.h> ---------------- 
 
#include <Point.h> 
#include <Shape.h> 
 
class Square : public Shape 
{ 
 public: 
   explicit Square( double side ) 
      : side_( side ) 
   { 
      /* Checking that the given side length is valid */ 
   } 
 
   double side  () const { return side_; } 
   Point  center() const { return center_; } 
 
   void draw( /*some arguments*/ ) const override;   
 
 private: 
   double side_; 
   Point center_{}; 
}; 
 
 
//---- <Square.cpp> ---------------- 
 
#include <Square.h> 
#include /* some graphics library */ 
 
void Square::draw( /*some arguments*/ ) const 
{ 
   // ... Implementing the logic for drawing a square 
} 

The most important aspect is the pure virtual draw() member function of
the Shape base class ( ). While you were on vacation, one of your team
members already implemented this draw() member function for both the
Circle and the Square classes using OpenGL (  and ). The tool is



already able to draw circles and squares, and the entire team agrees that the
resulting graphics look pretty neat. Everyone is happy!

Analyzing the Design Issues
Everyone, except you, that is. Returning from your vacation, you of course
immediately realize that the implemented solution violates the Single-
Responsibility Principle (SRP).  As it is, the Shape hierarchy is not
designed for change. First, it’s not easy to change the way a shape is drawn.
In the current implementation, there is only one fixed way of drawing
shapes, and it’s not possible to change these details nonintrusively. Since
you already predict that the tool will have to support multiple graphic
libraries, this is definitely a problem.  And second, if you eventually
perform the change, you need to change the behavior in multiple, unrelated
places.

But there is more. Since the drawing functionality is implemented inside
Circle and Square, the Circle and Square classes depend on the
implementation details of draw(), meaning they depend on OpenGL.
Despite the fact that circles and squares should primarily be some simple
geometric primitives, these two classes now carry the burden of having to
use OpenGL everywhere they are used.

When pointing this out to your colleagues, they are, at first, a little
dumbfounded. And also a little annoyed, since they didn’t expect you to
point out any flaws in their beautiful solution. However, you have a very
nice way of explaining the problem, and eventually they agree with you and
start to think about a better solution.

It doesn’t take them long to come up with a better approach. In the next
team meeting a few days later, they present their new idea: another layer in
the inheritance hierarchy (see Figure 5-2).

1
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Figure 5-2. The extended Shape inheritance hierarchy



To demonstrate the idea, they have already implemented the OpenGLCircle
and OpenGLSquare classes:

//---- <Circle.h> ---------------- 
 
#include <Shape.h> 
 
class Circle : public Shape 
{ 
 public: 
   // ... No implementation of the draw() member function anymore 
}; 
 
 
//---- <OpenGLCircle.h> ---------------- 
 
#include <Circle.h> 
 
class OpenGLCircle : public Circle 
{ 
 public: 
   explicit OpenGLCircle( double radius ) 
      : Circle( radius ) 
   {} 
 
   void draw( /*some arguments*/ ) const override; 
}; 
 
 
//---- <OpenGLCircle.cpp> ---------------- 
 
#include <OpenGLCircle.h> 
#include /* OpenGL graphics library headers */ 
 
void OpenGLCircle::draw( /*some arguments*/ ) const 
{ 
   // ... Implementing the logic for drawing a circle by means of OpenGL 
} 
 
 
//---- <Square.h> ---------------- 
 
#include <Shape.h> 
 
class Square : public Shape 
{ 



 public: 
   // ... No implementation of the draw() member function anymore 
}; 
 
 
//---- <OpenGLSquare.h> ---------------- 
 
#include <Square.h> 
 
class OpenGLSquare : public Square 
{ 
 public: 
   explicit OpenGLSquare( double side ) 
      : Square( side ) 
   {} 
 
   void draw( /*some arguments*/ ) const override; 
}; 
 
 
//---- <OpenGLSquare.cpp> ---------------- 
 
#include <OpenGLSquare.h> 
#include /* OpenGL graphics library headers */ 
 
void OpenGLSquare::draw( /*some arguments*/ ) const 
{ 
   // ... Implementing the logic for drawing a square by means of OpenGL 
}

Inheritance! Of course! By simply deriving from Circle and Square, and
by moving the implementation of the draw() function further down the
hierarchy, it is easily possible to implement the drawing in different ways.
For instance, there could be a MetalCircle and a VulkanCircle, assuming
that the Metal and Vulkan libraries need to be supported. Suddenly, change
is easy, right?

While your colleagues are still very proud about their new solution, you
already realize that this approach will not work well for long. And it is easy
to demonstrate the shortcomings: all you have to do is consider another
requirement, for instance, a serialize() member function:

https://developer.apple.com/metal
https://www.vulkan.org/


 
class Shape 
{ 
 public: 
   virtual ~Shape() = default; 
 
   virtual void draw( /*some arguments*/ ) const = 0; 
   virtual void serialize( /*some arguments*/ ) const = 0;   
}; 

The serialize() member function ( ) is supposed to transform a shape
into a byte sequence, which can be stored in a file or a database. From
there, it’s possible to deserialize the byte sequence to re-create the exact
same shape. And just like the draw() member function, the serialize()
member function can be implemented in various ways. For instance, you
could reach for the protobuf or Boost.serialization libraries.

Using the same strategy of moving the implementation details down the
inheritance hierarchy, this will quickly lead to a pretty complex and rather
artificial hierarchy (see Figure 5-3). Consider the class names:
OpenGLProtobufCircle, MetalBoostSerial Square, and so on.
Ridiculous, right? And how should we structure this: should we add another
layer in the hierarchy (see the Square branch)? That approach would
quickly lead to a deep and complex hierarchy. Or should we rather flatten
the hierarchy out (as in the Circle branch of the hierarchy)? And what
about reusing implementation details? For instance, how would it be
possible to reuse the OpenGL code between the OpenGLProtobufCircle
and the OpenGLBoostSerialCircle classes?

https://oreil.ly/Q71oF
https://oreil.ly/1m84h




Figure 5-3. Adding the serialize() member function results in a deep and complex inheritance
hierarchy

The Strategy Design Pattern Explained
You realize that your colleagues are just too enamored with inheritance, and
that it’s up to you to save the day. They appear to need someone to show
them how to properly design for this kind of change and present them a
proper solution to the problem. As the two pragmatic programmers
remarked:

Inheritance is rarely the answer.

The problem is still the violation of the SRP. Since you have to plan for
changing how the different shapes are drawn, you should identify the
drawing aspect as a variation point. With this realization, the correct
approach is to design for change, follow the SRP, and thus extract the
variation point. That is the intent of the Strategy design pattern, one of the
classic GoF design patterns.

THE STRATEGY DESIGN PATTERN
Intent: “Define a family of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary independently from clients that use
it.”

Instead of implementing the virtual draw() function in a derived class, you
introduce another class for the purpose of drawing shapes. In the case of the
classic, object-oriented (OO) form of the Strategy design pattern, this is
achieved by introducing the DrawStrategy base class (see Figure 5-4).
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Figure 5-4. The UML representation of the Strategy design pattern

The isolation of the drawing aspect now allows us to change the
implementation of drawing without having to modify the shape classes.
This fulfills the idea of the SRP. You are now also able to introduce new
implementations of draw() without modification of any other code. That
fulfills the Open-Closed Principle (OCP). Once again, in this OO setting,
SRP is the enabler of the OCP.

The following code snippet shows a naive implementation of the
DrawStrategy base class:

 
//---- <DrawStrategy.h> ---------------- 
 
class Circle; 
class Square; 
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class DrawStrategy 
{ 
 public: 
   virtual ~DrawStrategy() = default; 
 
   virtual void draw( Circle const& circle, /*some arguments*/ ) const = 0;   
   virtual void draw( Square const& square, /*some arguments*/ ) const = 0;   
}; 

The DrawStrategy class comes with a virtual destructor and two pure
virtual draw() functions, one for circles ( ) and one for squares ( ). For
this base class to compile, you need to forward declare the Circle and the
Square classes.

The Shape base class does not change due to the Strategy design pattern. It
still represents an abstraction for all shapes and thus offers a pure virtual
draw() member function. Strategy aims at extracting implementation
details and thus affects only the derived classes:

//---- <Shape.h> ---------------- 
 
class Shape 
{ 
 public: 
   virtual ~Shape() = default; 
 
   virtual void draw( /*some arguments*/ ) const = 0; 
   // ... Potentially other functions, e.g. a 'serialize()' member function 
};

While the Shape base class does not change due to Strategy, the Circle and
Square classes are affected:

 
//---- <Circle.h> ---------------- 
 
#include <Shape.h> 
#include <DrawStrategy.h> 
#include <memory> 
#include <utility> 
 
class Circle : public Shape 
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{ 
 public: 
   explicit Circle( double radius, std::unique_ptr<DrawStrategy> drawer )   
      : radius_( radius ) 
      , drawer_( std::move(drawer) )   
   { 
      /* Checking that the given radius is valid and that 
         the given std::unique_ptr instance is not nullptr */ 
   } 
 
   void draw( /*some arguments*/ ) const override 
   { 
      drawer_->draw( *this, /*some arguments*/ );   
   } 
 
   double radius() const { return radius_; } 
 
 private: 
   double radius_; 
   std::unique_ptr<DrawStrategy> drawer_;   
}; 
 
 
//---- <Square.h> ---------------- 
 
#include <Shape.h> 
#include <DrawStrategy.h> 
#include <memory> 
#include <utility> 
 
class Square : public Shape 
{ 
 public: 
   explicit Square( double side, std::unique_ptr<DrawStrategy> drawer )   
      : side_( side ) 
      , drawer_( std::move(drawer) )   
   { 
      /* Checking that the given side length is valid and that 
         the given std::unique_ptr instance is not nullptr */ 
   } 
 
   void draw( /*some arguments*/ ) const override 
   { 
      drawer_->draw( *this, /*some arguments*/ );   
   } 
 
   double side() const { return side_; } 
 



 private: 
   double side_; 
   std::unique_ptr<DrawStrategy> drawer_;   
}; 

Both Circle and Square are now expecting a unique_ptr to a
DrawStrategy in their constructors ( ). This allows us to configure the
drawing behavior from the outside, commonly called dependency injection.
The unique_ptr is moved ( ) into a new data member of the same type (
). It is also possible to provide corresponding setter functions, which would
allow you to change the drawing behavior at a later point. The draw()
member function now doesn’t have to implement the drawing itself but
simply has to call the draw() function for the given DrawStrategy ( ).

Analyzing the Shortcomings of the Naive Solution
Wonderful! With this implementation in place, you are now able to locally,
in isolation, change the behavior of how shapes are drawn, and you enable
everyone to implement the new drawing behavior. However, as it is right
now, our Strategy implementation has a serious design flaw. To analyze this
flaw, let’s assume that you have to add a new kind of shape, maybe a
Triangle. This should be easy, because, as we have discussed in
“Guideline 15: Design for the Addition of Types or Operations”, the
strength of OOP is the addition of new types.

As you’re starting to introduce this Triangle, you realize that it’s not as
easy to add the new kind of shape as expected. First, you need to write the
new class. That is to be expected and not a problem at all. But then you
have to update the DrawStrategy base class to also enable the drawing of
triangles. This, in turn, will have an unfortunate impact on circles and
squares: both the Circle and Square classes need to be recompiled,
retested, and potentially redeployed. More generally speaking, all shapes
are affected in this way. And that should strike you as problematic. Why
should circles and squares have to recompile if you add a Triangle class?

The technical reason is that via the DrawStrategy base class, all shapes
implicitly know about one another. Adding a new shape therefore affects all
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other shapes. The underlying design reason is a violation of the Interface
Segregation Principle (ISP) (see “Guideline 3: Separate Interfaces to Avoid
Artificial Coupling”). By defining a single DrawStrategy base class, you
have artificially coupled circles, squares, and triangles together. Due to this
coupling, you have made it more difficult to add new types and thus have
limited the strength of OOP. In comparison, you have created a very similar
situation as we had when we talked about a procedural solution for the
drawing of shapes (see “Guideline 15: Design for the Addition of Types or
Operations”).

“Didn’t we unintentionally reimplement the Visitor design pattern?” you are
wondering. I see your point: the DrawStrategy looks very similar to a
Visitor indeed. But unfortunately, it does not fulfill the intent of a Visitor,
since you cannot easily add other operations. To do so, you would have to
intrusively add a virtual member function in the Shape hierarchy. “And it is
not a Strategy either, because we cannot add types, right?” Yes, correct. You
see, from a design perspective, this is the worst kind of situation.

To properly implement the Strategy design pattern, you have to extract the
implementation details of each shape separately. You have to introduce one
DrawStrategy class for each kind of shape:

 
//---- <DrawCircleStrategy.h> ---------------- 
 
class Circle; 
 
class DrawCircleStrategy   
{ 
 public: 
   virtual ~DrawCircleStrategy() = default; 
 
   virtual void draw( Circle const& circle, /*some arguments*/ ) const = 0; 
}; 
 
 
//---- <Circle.h> ---------------- 
 
#include <Shape.h> 
#include <DrawCircleStrategy.h> 
#include <memory> 



#include <utility> 
 
class Circle : public Shape 
{ 
 public: 
   explicit Circle( double radius, std::unique_ptr<DrawCircleStrategy> drawer 
) 
      : radius_( radius ) 
      , drawer_( std::move(drawer) ) 
   { 
      /* Checking that the given radius is valid and that 
         the given 'std::unique_ptr' is not a nullptr */ 
   } 
 
   void draw( /*some arguments*/ ) const override 
   { 
      drawer_->draw( *this, /*some arguments*/ ); 
   } 
 
   double radius() const { return radius_; } 
 
 private: 
   double radius_; 
   std::unique_ptr<DrawCircleStrategy> drawer_; 
}; 
 
 
//---- <DrawSquareStrategy.h> ---------------- 
 
class Square; 
 
class DrawSquareStrategy   
{ 
 public: 
   virtual ~DrawSquareStrategy() = default; 
 
   virtual void draw( Square const& square, /*some arguments*/ ) const = 0; 
}; 
 
 
//---- <Square.h> ---------------- 
 
#include <Shape.h> 
#include <DrawSquareStrategy.h> 
#include <memory> 
#include <utility> 
 
class Square : public Shape 



{ 
 public: 
   explicit Square( double side, std::unique_ptr<DrawSquareStrategy> drawer ) 
      : side_( side ) 
      , drawer_( std::move(drawer) ) 
   { 
      /* Checking that the given side length is valid and that 
         the given 'std::unique_ptr' is not a nullptr */ 
   } 
 
   void draw( /*some arguments*/ ) const override 
   { 
      drawer_->draw( *this, /*some arguments*/ ); 
   } 
 
   double side() const { return side_; } 
 
 private: 
   double side_; 
   std::unique_ptr<DrawSquareStrategy> drawer_; 
}; 

For the Circle class, you have to introduce the DrawCircleStrategy base
class ( ), and for the Square class, it is the DrawSquareStrategy ( ) base
class. And with the addition of a Triangle class, you will also have to add
a DrawTriangleStrategy base class. Only in this way can you properly
separate concerns and still allow everyone to add new types and new
implementations for the drawing of shapes.

With this functionality in place, you can easily implement new Strategy
classes for drawing circles, squares, and eventually triangles. As an
example, consider the OpenGLCircleStrategy, which implements the
DrawCircleStrategy interface:

//---- <OpenGLCircleStrategy.h> ---------------- 
 
#include <Circle.h> 
#include <DrawCircleStrategy.h> 
#include /* OpenGL graphics library */ 
 
class OpenGLCircleStrategy : public DrawCircleStrategy 
{ 
 public: 



   explicit OpenGLCircleStrategy( /* Drawing related arguments */ ); 
 
   void draw( Circle const& circle, /*...*/ ) const override; 
 
 private: 
   /* Drawing related data members, e.g. colors, textures, ... */ 
};

In Figure 5-5 you can see the dependency graph for the Circle class. Note
that the Circle and DrawCircleStrategy classes are on the same
architectural level. Even more noteworthy is the cyclic dependency between
them: Circle depends on the DrawCircleStrategy, but the
DrawCircleStrategy also depends on Circle. But don’t worry: although
this may look like a problem at first sight, it isn’t. It is a necessary
relationship that shows that Circle really owns the DrawCircleStrategy
and by that creates the desired dependency inversion, as discussed in
“Guideline 9: Pay Attention to the Ownership of Abstractions”.

“Wouldn’t it be possible to implement the different draw Strategy classes
using a class template? I’m imagining something similar to the Visitor class
used for the Acyclic Visitor”:

//---- <DrawStrategy.h> ---------------- 
 
template< typename T > 
class DrawStrategy 
{ 
 public: 
   virtual ~DrawStrategy() = default; 
   virtual void draw( T const& ) const = 0; 
};
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Figure 5-5. Dependency graph for the Strategy design pattern

This is a great idea and exactly what you should do. By means of this class
template, you can lift the DrawStrategy up into a higher architectural level,
reuse code, and follow the DRY principle (see Figure 5-6). Additionally, if
we would have used this approach from the start, we would not have fallen
into the trap of artificially coupling the different shape types. Yes, I really
like that!

Although this is how we would implement such a Strategy class, you still
should not expect that this will reduce the number of base classes (it’s still
the same, just generated) or that it will save you a lot of work. The
implementations of DrawStrategy, such as the OpenGLCircleStrategy
class, represent most of the work and will hardly change:

//---- <OpenGLCircleStrategy.h> ---------------- 
 
#include <Circle.h> 
#include <DrawStrategy.h> 
#include /* OpenGL graphics library */ 
 
class OpenGLCircleStrategy : public DrawStrategy<Circle> 
{ 
   // ... 
};





Figure 5-6. Updated dependency graph for the Strategy design pattern

Assuming a similar implementation for the OpenGLSquareStrategy, we
can now put everything together and draw shapes again but this time
properly decoupled with the Strategy design pattern:

#include <Circle.h> 
#include <Square.h> 
#include <OpenGLCircleStrategy.h> 
#include <OpenGLSquareStrategy.h> 
#include <memory> 
#include <vector> 
 
int main() 
{ 
   using Shapes = std::vector<std::unique_ptr<Shape>>; 
 
   Shapes shapes{}; 
 
   // Creating some shapes, each one 
   //   equipped with the corresponding OpenGL drawing strategy 
   shapes.emplace_back( 
      std::make_unique<Circle>( 
         2.3, std::make_unique<OpenGLCircleStrategy>(/*...red...*/) ) ); 
   shapes.emplace_back( 
      std::make_unique<Square>( 
         1.2, std::make_unique<OpenGLSquareStrategy>(/*...green...*/) ) ); 
   shapes.emplace_back( 
      std::make_unique<Circle>( 
         4.1, std::make_unique<OpenGLCircleStrategy>(/*...blue...*/) ) ); 
 
   // Drawing all shapes 
   for( auto const& shape : shapes ) 
   { 
      shape->draw( /*some arguments*/ ); 
   } 
 
   return EXIT_SUCCESS; 
}

Comparison Between Visitor and Strategy
As you have now learned about both the Visitor and Strategy design
patterns, you might wonder what the difference between the two is. After



all, the implementation looks fairly similar. But while there are parallels in
implementation, the properties of the two design patterns are very different.
With the Visitor design pattern, we have identified the general addition of
operations as the variation point. Therefore, we created an abstraction for
operations in general, which in turn allowed everyone to add operations.
The unfortunate side effect was that it was no longer easy to add new shape
types.

With the Strategy design pattern, we have identified the implementation
details of a single function as a variation point. After introducing an
abstraction for these implementation details, we’re still able to easily add
new types of shapes, but we are not able to easily add new operations.
Adding an operation would still require you to intrusively add a virtual
member function. Hence, the intent of the Strategy design pattern is the
opposite of the intent of the Visitor design pattern.

It may sound promising to combine the two design patterns to gain the
advantages of both ideas (making it easy to add both types and operations).
Unfortunately, this does not work: whichever of the two design patterns you
apply first will fix one of the two axes of freedom.  Therefore, you should
just remember the strengths and weaknesses of these two design patterns
and apply them based on your expectations of how your codebase will
evolve.

Analyzing the Shortcomings of the Strategy Design
Pattern
I have shown you the advantages of the Strategy design pattern: it allows
you to reduce the dependencies on a particular implementation detail by
introducing an abstraction for that detail. However, there is no silver bullet
in software design, and every design comes with a number of drawbacks.
The Strategy design pattern is no exception, and it’s important to also take
potential disadvantages into account.

First, while the implementation details of a certain operation have been
extracted and isolated, the operation itself is still part of the concrete type.
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This fact is evidence of the aforementioned limitation that we are still not
able to easily add operations. Strategy, in contrast to Visitor, preserves the
strength of OOP and enables you to easily add new types.

Second, it pays off to identify such variation points early. Otherwise a large
refactoring is required. Of course, this doesn’t mean you should implement
everything with Strategy up front, just in case, to avoid a refactoring. This
could quickly result in overengineering. But at the first indication that an
implementation detail might change, or that there is a desire to have
multiple implementations, you should rather quickly implement the
necessary modifications. The best, but of course a little insubstantial, advice
is to keep things as simple as possible (the KISS principle; Keep It Simple,
Stupid).

Third, if you implement Strategy by means of a base class, the performance
will certainly take a hit by the additional runtime indirection. The
performance is also affected by the many manual allocations (the
std::make_unique() calls), the resulting memory fragmentation, and the
various indirections due to numerous pointers. This is to be expected, yet
the flexibility of your implementation and the opportunity for everyone to
add new implementations may outweigh this performance penalty. Of
course, it depends, and you will have to decide on a case-by-case basis. If
you implement Strategy using templates (see the discussion about “Policy-
Based Design”), this disadvantage is of no concern.

Last but not least, the major disadvantage of the Strategy design pattern is
that a single Strategy should deal with either a single operation or a small
group of cohesive functions. Otherwise you would again violate the SRP. If
the implementation details of multiple operations need to be extracted, there
will have to be multiple Strategy base classes and multiple data members,
which can be set via dependency injection. Consider, for instance, the
situation with an additional serialize() member function:

//---- <DrawCircleStrategy.h> ---------------- 
 
class Circle; 
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class DrawCircleStrategy 
{ 
 public: 
   virtual ~DrawCircleStrategy() = default; 
 
   virtual void draw( Circle const& circle, /*some arguments*/ ) const = 0; 
}; 
 
 
//---- <SerializeCircleStrategy.h> ---------------- 
 
class Circle; 
 
class SerializeCircleStrategy 
{ 
 public: 
   virtual ~SerializeCircleStrategy() = default; 
 
   virtual void serialize( Circle const& circle, /*some arguments*/ ) const = 
0; 
}; 
 
 
//---- <Circle.h> ---------------- 
 
#include <Shape.h> 
#include <DrawCircleStrategy.h> 
#include <SerializeCircleStrategy.h> 
#include <memory> 
#include <utility> 
 
class Circle : public Shape 
{ 
 public: 
   explicit Circle( double radius 
                  , std::unique_ptr<DrawCircleStrategy> drawer 
                  , std::unique_ptr<SerializeCircleStrategy> serializer 
                  /* potentially more strategy-related arguments */ ) 
      : radius_( radius ) 
      , drawer_( std::move(drawer) ) 
      , serializer_( std::move(serializer) ) 
      // ... 
   { 
      /* Checking that the given radius is valid and that 
         the given std::unique_ptrs are not nullptrs */ 
   } 
 
   void draw( /*some arguments*/ ) const override 



   { 
      drawer_->draw( *this, /*some arguments*/ ); 
   } 
 
   void serialize( /*some arguments*/ ) const override 
   { 
      serializer_->serialize( *this, /*some arguments*/ ); 
   } 
 
   double radius() const { return radius_; } 
 
 private: 
   double radius_; 
   std::unique_ptr<DrawCircleStrategy> drawer_; 
   std::unique_ptr<SerializeCircleStrategy> serializer_; 
   // ... Potentially more strategy-related data members 
};

While this leads to a very unfortunate proliferation of base classes and
larger instances due to multiple pointers, it also raises the question of how
to design the class so that it’s possible to conveniently assign multiple
different strategies. Therefore, the Strategy design pattern appears to be
strongest in situations where you need to isolate a small number of
implementation details. If you encounter a situation where you need to
extract the details of many operations, it might be better to consider other
approaches (see, for instance, the External Polymorphism design pattern in
Chapter 7 or the Type Erasure design pattern in Chapter 8).

Policy-Based Design
As already demonstrated in previous chapters, the Strategy design pattern is
not limited to dynamic polymorphism. On the contrary, the intent of
Strategy can be implemented perfectly in static polymorphism using
templates. Consider, for instance, the following two algorithms from the
Standard Library:

 
namespace std { 
 
template< typename ForwardIt, typename UnaryPredicate > 
constexpr ForwardIt 



   partition( ForwardIt first, ForwardIt last, UnaryPredicate p );   
 
template< typename RandomIt, typename Compare > 
constexpr void 
   sort( RandomIt first, RandomIt last, Compare comp );   
 
} // namespace std 

Both the std::partition() and the std::sort() algorithm make use of
the Strategy design pattern. The UnaryPredicate argument of
std::partition() ( ) and the Compare argument of std::sort() ( )
represent a means to inject part of the behavior from outside. More
specifically, both arguments allow you to specify how elements are ordered.
Hence, both algorithms extract a specific part of their behavior and provide
an abstraction for it in the form of a concept (see “Guideline 7: Understand
the Similarities Between Base Classes and Concepts”). This, in contrast to
the OO form of Strategy, does not incur any runtime performance penalty.

A similar approach can be seen in the std::unique_ptr class template:

 
namespace std { 
 
template< typename T, typename Deleter = std::default_delete<T> >   
class unique_ptr; 
 
template< typename T, typename Deleter >   
class unique_ptr<T[], Deleter>; 
 
} // namespace std 

For both the base template ( ) and its specialization for arrays ( ), it is
possible to specify an explicit Deleter as the second template argument.
With this argument, you can decide whether you want to free the resource
by means of delete, free(), or any other deallocation function. It’s even
possible to “abuse” std::unique_ptr to perform a completely different
kind of cleanup.

This flexibility is also evidence for the Strategy design pattern. The
template argument allows you to inject some cleanup behavior into the



class. This form of Strategy is also called policy-based design, based on a
design philosophy introduced by Andrei Alexandrescu in 2001.  The idea
is the same: extract and isolate specific behavior of class templates to
improve changeability, extensibility, testability, and reusability. Thus,
policy-based design can be considered the static polymorphism form of the
Strategy design pattern. And evidently, the design works really well, as the
many applications of this idea in the Standard Library demonstrate.

You can also apply policy-based design to the shape-drawing example.
Consider the following implementation of the Circle class:

 
//---- <Circle.h> ---------------- 
 
#include <Shape.h> 
#include <DrawCircleStrategy.h> 
#include <memory> 
#include <utility> 
 
template< typename DrawCircleStrategy >   
class Circle : public Shape 
{ 
 public: 
   explicit Circle( double radius, DrawCircleStrategy drawer ) 
      : radius_( radius ) 
      , drawer_( std::move(drawer) ) 
   { 
      /* Checking that the given radius is valid */ 
   } 
 
   void draw( /*some arguments*/ ) const override 
   { 
      drawer_( *this, /*some arguments*/ );   
   } 
 
   double radius() const { return radius_; } 
 
 private: 
   double radius_; 
   DrawCircleStrategy drawer_;  // Could possibly be omitted, if the given 
                                // strategy is presumed to be stateless. 
}; 
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Instead of passing std::unique_ptr to a DrawCircleStrategy base class
in the constructor, you could specify the Strategy with a template argument
( ). The biggest advantage would be the performance improvement due to
fewer pointer indirections: instead of calling through std::unique_ptr,
you could directly call to the concrete implementation provided by the
DrawCircleStrategy ( ). On the downside, you would lose the flexibility
to adapt the drawing Strategy of a specific Circle instance at runtime.
Also, you wouldn’t have a single Circle class anymore. You would have
one instantiation of Circle for every drawing strategy. And last but not
least, you should keep in mind that class templates usually completely
reside in header files. You could therefore lose the opportunity to hide
implementation details in a source file. As always, there is no perfect
solution, and the choice of the “right” solution depends on the actual
context.

In summary, the Strategy design pattern is one of the most versatile
examples in the catalog of design patterns. You will find it useful in many
situations in the realm of dynamic as well as static polymorphism.
However, it is not the ultimate solution for every problem—be aware of its
potential disadvantages.

GUIDELINE 19: USE STRATEGY TO ISOLATE HOW
THINGS ARE DONE

Understand that inheritance is rarely the answer.

Apply the Strategy design pattern with the intent to extract the
implementation details of a cohesive set of functions.

Implement one Strategy for each operation to avoid artificial
coupling.

Consider policy-based design as the compile-time form of the
Strategy design pattern.



Guideline 20: Favor Composition over
Inheritance
After the enormous surge of enthusiasm for OOP in the 90s and early
2000s, OOP today is on the defensive. The voices that argue against OOP
and highlight its disadvantages grow stronger and louder. This is not limited
to the C++ communities but is also in other programming language
communities. While OOP in its entirety indeed has some limitations, let’s
focus on the one feature that appears to generate most of the heat:
inheritance. As Sean Parent remarked:

Inheritance is the base class of evil.

While inheritance is sold as a very natural and intuitive way of modeling
real-world relations, it turns out to be much harder to use than promised.
You have already seen the subtle failures of using inheritance when we
talked about the Liskov Substitution Principle (LSP) in “Guideline 6:
Adhere to the Expected Behavior of Abstractions”. But there are other
aspects of inheritance that are often misunderstood.

First and foremost, inheritance is always described as simplifying
reusability. This seems intuitive, since it appears obvious that you can reuse
code easily if you just inherit from another class. Unfortunately, that’s not
the kind of reuse inheritance brings to you. Inheritance is not about reusing
code in a base class; instead, it is about being reused by other code that uses
the base class polymorphically. For instance, assuming a slightly extended
Shape base class, the following functions work for all kinds of shapes and
thus can be reused by all implementations of the Shape base class:

 
class Shape 
{ 
 public: 
   virtual ~Shape() = default; 
 
   virtual void translate( /*some arguments*/ ) = 0; 
   virtual void rotate( /*some arguments*/ ) = 0; 
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   virtual void draw( /*some arguments*/ ) const = 0; 
   virtual void serialize( /*some arguments*/ ) const = 0; 
 
   // ... Potentially other member functions ... 
}; 
 
void rotateAroundPoint( Shape& shape );   
void mergeShapes( Shape& s1, Shape& s2 );   
void writeToFile( Shape const& shape );   
void sendViaRPC( Shape const& shape );   
// ... 

All four functions ( , , , and ) are built on the Shape abstraction. All of
these functions are coupled only to the common interface of all kinds of
shapes but not to any specific shape. All kinds of shapes can be rotated
around a point, merged, written to file, and sent via RPC. Every shape
“reuses” this functionality.

It is the ability to express functionality by means of an abstraction that
creates the opportunity to reuse code. This functionality is expected to
create a vast amount of code, in comparison to the small amount of code the
base class contains. Real reusability, therefore, is created by the
polymorphic use of a type, not by polymorphic types.

Second, inheritance is said to help in decoupling software entities. While
that is most certainly true (remember, for instance, the discussion about the
Dependency Inversion Principle (DIP) in “Guideline 9: Pay Attention to the
Ownership of Abstractions”), it’s often not explained that inheritance also
creates coupling. You’ve seen evidence of that before. While implementing
the Visitor design pattern, you experienced that inheritance forces certain
implementation details on you. In a classic Visitor, you have to implement
the pure virtual functions of a Visitor base class as they are required, even
if this is not optimal for your application. You also don’t have a lot of
choices with respect to the function arguments or return types. These things
are fixed.

You also experienced this coupling at the beginning of the discussion on the
Strategy design pattern. In this case, inheritance forced a structural coupling
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that caused a deep(er) inheritance hierarchy, resulted in questionable
naming of classes, and impaired reuse.

At this point, you might get the impression that I’m trying to discredit
inheritance completely. Well, to be honest, I am trying to make it look just a
little bad, but only as much as necessary. To state it clearly: inheritance is
not bad, nor is it wrong to use it. On the contrary: inheritance is a very
powerful feature, and if used properly you can do incredible things with it.
However, of course you remember the Peter Parker Principle:

With great power comes great responsibility.
—Peter Parker, aka Spider-Man

The problem is the “if used properly” part. Inheritance has proven to be
hard to use properly (definitely harder than we are led to believe; see my
previous reasonings), and thus is misused unintentionally. It is also
overused, as many developers have the habit of using it for every kind of
problem.  This overuse appears to be the source of many problems, as
Michael Feathers remarks:

[Programming by difference]  fell out of favor in the 1990s when many
people in the OO community noticed that inheritance can be rather
problematic if it is overused.

In many situations, inheritance is neither the right approach nor the right
tool. Most of the time it is preferable to use composition instead. You
should not be surprised by that revelation, though, because you have
already seen it to be true. Composition is the reason the OO form of the
Strategy design pattern works so well, not inheritance. It is the introduction
of an abstraction and the aggregation of corresponding data members that
make the Strategy design pattern so powerful, not the inheritance-based
implementation of different strategies. In fact, you will find that many
design patterns are firmly based on composition, not on inheritance.  All
of these enable extension by means of inheritance but are themselves
enabled by means of composition.
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Delegate to Services: Has-A Trumps Is-A.
—Andrew Hunt and David Thomas, The Pragmatic

Programmer

This is a general takeaway for many design patterns. I suggest you keep this
insight close at hand, as it will prove very useful in understanding the
design patterns that you will see in the remainder of this book, and will
improve the quality of your implementations.

GUIDELINE 20: FAVOR COMPOSITION OVER
INHERITANCE

Understand that inheritance is often overused and sometimes even
misused.

Keep in mind that inheritance creates a tight coupling.

Realize that many design patterns are enabled by composition, not
by inheritance.

Guideline 21: Use Command to Isolate What
Things Are Done
Before we get started with this guideline, let’s try an experiment. Open your
preferred email client and write an email to me. Add the following content:
“I love your book! It keeps me up all night and makes me forget all my
troubles.” OK, great. Now click Send. Good job! Give me a second to
check my emails…No, it’s not here yet…No, still not here…Let’s try again:
Click Resend. No, nothing. Hmm, I guess some server must be down. Or all
of my Commands simply failed: the WriteCommand, the SendCommand, the
ResendCommand, and so on. How unfortunate. But despite this failed
experiment, you now have a pretty good idea of another GoF design
pattern: the Command design pattern.



The Command Design Pattern Explained
The Command design pattern focuses on the abstraction and isolation of
work packages that (most often) are executed once and (usually)
immediately. For that purpose, it recognizes the existence of different kinds
of work packages as variation points and introduces the corresponding
abstraction that allows the easy implementation of new kinds of work
packages.

THE COMMAND DESIGN PATTERN
Intent: “Encapsulate a request as an object, thereby letting you parameterize clients with
different requests, queue or log requests, and support undoable operations.”

Figure 5-7 shows the original UML formulation, taken from the GoF book.
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Figure 5-7. The UML representation of the Command design pattern

In this OO-based form, the Command pattern introduces an abstraction in
the form of the Command base class. This enables anyone to implement a
new kind of ConcreteCommand. That ConcreteCommand can do anything,
even perform an action on some kind of Receiver. The effect of a
command is triggered via the abstract base class by a particular kind of
Invoker.

As a concrete example of the Command design pattern, let’s consider the
following implementation of a calculator. The first code snippet shows the
implementation of a CalculatorCommand base class, which represents the
abstraction of a mathematical operation on a given integer:



 
//---- <CalculatorCommand.h> ---------------- 
 
class CalculatorCommand 
{ 
 public: 
   virtual ~CalculatorCommand() = default; 
 
   virtual int execute( int i ) const = 0;   
   virtual int undo( int i ) const = 0;   
}; 

The CalculatorCommand class expects derived classes to implement both
the pure virtual execute() function ( ) and the pure virtual undo()
function ( ). The expectation for undo() is that it implements the necessary
actions to reverse the effect of the execute() function.

The Add and Subtract classes both represent possible commands for a
calculator and therefore implement the CalculatorCommand base class:

 
//---- <Add.h> ---------------- 
 
#include <CalculatorCommand.h> 
 
class Add : public CalculatorCommand 
{ 
 public: 
   explicit Add( int operand ) : operand_(operand) {} 
 
   int execute( int i ) const override   
   { 
      return i + operand_; 
   } 
   int undo( int i ) const override   
   { 
      return i - operand_; 
   } 
 
 private: 
   int operand_{}; 
}; 
 
 
//---- <Subtract.h> ---------------- 



 
#include <CalculatorCommand.h> 
 
class Subtract : public CalculatorCommand 
{ 
 public: 
   explicit Subtract( int operand ) : operand_(operand) {} 
 
   int execute( int i ) const override   
   { 
      return i - operand_; 
   } 
   int undo( int i ) const override   
   { 
      return i + operand_; 
   } 
 
 private: 
   int operand_{}; 
}; 

Add implements the execute() function using an addition operation ( )
and the undo() function using a subtraction operation ( ). Subtract
implements the inverse (  and ).

Thanks to the CalculatorCommand hierarchy, the Calculator class itself
can be kept rather simple:

 
//---- <Calculator.h> ---------------- 
 
#include <CalculatorCommand.h> 
#include <stack> 
 
class Calculator 
{ 
 public: 
   void compute( std::unique_ptr<CalculatorCommand> command );   
   void undoLast();   
 
   int result() const; 
   void clear(); 
 
 private: 
   using CommandStack = std::stack<std::unique_ptr<CalculatorCommand>>; 



 
   int current_{};   
   CommandStack stack_;   
}; 
 
 
//---- <Calculator.cpp> ---------------- 
 
#include <Calculator.h> 
 
void Calculator::compute( std::unique_ptr<CalculatorCommand> command )   
{ 
   current_ = command->execute( current_ ); 
   stack_.push( std::move(command) ); 
} 
 
void Calculator::undoLast()   
{ 
   if( stack_.empty() ) return; 
 
   auto command = std::move(stack_.top()); 
   stack_.pop(); 
 
   current_ = command->undo(current_); 
} 
 
int Calculator::result() const 
{ 
   return current_; 
} 
 
void Calculator::clear() 
{ 
   current_ = 0; 
   CommandStack{}.swap( stack_ );  // Clearing the stack 
} 

The only functions we need for the computing activities are compute() ( )
and undoLast() ( ). The compute() function is passed a
CalculatorCommand instance, immediately executes it to update the current
value ( ), and stores it on the stack ( ). The undoLast() function reverts
the last executed command by popping it from the stack and calling
undo().

The main() function combines all of the pieces:



 
//---- <Main.cpp> ---------------- 
 
#include <Calculator.h> 
#include <Add.h> 
#include <Subtract.h> 
#include <cstdlib> 
 
int main() 
{ 
   Calculator calculator{};   
 
   auto op1 = std::make_unique<Add>( 3 );   
   auto op2 = std::make_unique<Add>( 7 );   
   auto op3 = std::make_unique<Subtract>( 4 );   
   auto op4 = std::make_unique<Subtract>( 2 );   
 
   calculator.compute( std::move(op1) );  // Computes 0 + 3, stores and 
returns 3 
   calculator.compute( std::move(op2) );  // Computes 3 + 7, stores and 
returns 10 
   calculator.compute( std::move(op3) );  // Computes 10 - 4, stores and 
returns 6 
   calculator.compute( std::move(op4) );  // Computes 6 - 2, stores and 
returns 4 
 
   calculator.undoLast();  // Reverts the last operation, 
                           // stores and returns 6 
 
   int const res = calculator.result();  // Get the final result: 6 
 
   // ... 
 
   return EXIT_SUCCESS; 
} 

We first create a calculator ( ) and a series of operations ( , , , and ),
which we apply one after another. After that, we revert op4 by means of the
undo() operation before we query the final result.

This design very nicely follows the SOLID principles.  It adheres to the
SRP since the variation point has already been extracted by means of the
Command design pattern. As a result, both compute() and undo() do not
have to be virtual functions. The SRP also acts as an enabler for the OCP,

19



which allows us to add new operations without having to modify any
existing code. Last, but not least, if the ownership for the Command base
class is properly assigned to the high level, then the design also adheres to
the DIP (see Figure 5-8).



Figure 5-8. Dependency graph for the Command design pattern

There is a second example of the Command design pattern that belongs in
the category of classic examples: a thread pool. The purpose of a thread
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pool is to maintain multiple threads waiting for tasks to be executed in
parallel. This idea is implemented by the following ThreadPool class: it
provides a couple of member functions to offload certain tasks to a specific
number of available threads: 

 
class Command   
{ /* Abstract interface to perform and undo any kind of action. */ }; 
 
class ThreadPool 
{ 
 public: 
   explicit ThreadPool( size_t numThreads ); 
 
   inline bool   isEmpty() const; 
   inline size_t size()    const; 
   inline size_t active()  const; 
   inline size_t ready()   const; 
 
   void schedule( std::unique_ptr<Command> command );   
 
   void wait(); 
 
   // ... 
}; 

Most importantly, the ThreadPool allows you to schedule a task via the
schedule() function ( ). This can be any task: the ThreadPool is not at all
concerned about what kind of work its threads will have to perform. With
the Command base class, it is completely decoupled from the actual kind of
task you schedule ( ).

By simply deriving from Command, you can formulate arbitrary tasks:

 
class FormattingCommand : public Command   
{ /* Implementation of formatting a disk */ }; 
 
class PrintCommand : public Command   
{ /* Implementation of performing a printer job */ } 
 
int main() 
{ 
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   // Creating a thread pool with initially two working threads 
   ThreadPool threadpool( 2 ); 
 
   // Scheduling two concurrent tasks 
   threadpool.schedule( 
      std::make_unique<FormattingCommand>( /*some arguments*/ ) ); 
   threadpool.schedule( 
      std::make_unique<PrintCommand>( /*some arguments*/ ) ); 
 
   // Waiting for the thread pool to complete both commands 
   threadpool.wait(); 
 
   return EXIT_SUCCESS; 
} 

One possible example of such a task is a FormattingCommand ( ). This
task would get the necessary information to trigger the formatting of a disk
via the operating system. Alternatively, you can imagine a PrintCommand
that receives all data to trigger a printer job ( ).

Also in this ThreadPool example, you recognize the effect of the
Command design pattern: the different kinds of tasks are identified as a
variation point and are extracted (which again follows the SRP), which
enables you to implement different kinds of tasks without the need to
modify existing code (adherence to the OCP).

Of course, there are also some examples from the Standard Library. For
instance, you will see the Command design pattern in action in the
std::for_each() ( ) algorithm:

 
namespace std { 
 
template< typename InputIt, typename UnaryFunction > 
constexpr UnaryFunction 
   for_each( InputIt first, InputIt last, UnaryFunction f );   
 
} // namespace std 

With the third argument, you can specify what task the algorithm is
supposed to perform on all of the given elements. This can be any action,



ranging from manipulating the elements to printing them, and can be
specified by something as simple as a function pointer to something as
powerful as a lambda:

#include <algorithms> 
#include <cstdlib> 
 
void multBy10( int& i ) 
{ 
   i *= 10; 
} 
 
int main() 
{ 
   std::vector<int> v{ 1, 2, 3, 4, 5 }; 
 
   // Multiplying all integers with 10 
   std::for_each( begin(v), end(v), multBy10 ); 
 
   // Printing all integers 
   std::for_each( begin(v), end(v), []( int& i ){ 
      std::cout << i << '\n'; 
   } ); 
 
   return EXIT_SUCCESS; 
}

The Command Design Pattern Versus the Strategy
Design Pattern
“Wait a second!” I can hear you cry out. “Didn’t you just explain that the
algorithms of the Standard Library are implemented by means of the
Strategy design pattern? Isn’t this a complete contradiction of the previous
statement?” Yes, you are correct. Just a few pages back, I did explain that
the std::partition() and std::sort() algorithms are implemented by
means of the Strategy design pattern. And therefore, I admit that it appears
as if I am now contradicting myself. However, I did not claim that all the
algorithms are based on Strategy. So let me explain.

From a structural point of view, the Strategy and Command design patterns
are identical: whether you’re using dynamic or static polymorphism, from



an implementation point of view, there is no difference between Strategy
and Command.  The difference lies entirely in the intent of the two design
patterns. Whereas the Strategy design pattern specifies how something
should be done, the Command design pattern specifies what should be
done. Consider, for instance, the std::partition() and
std::for_each() algorithms:

 
namespace std { 
 
template< typename ForwardIt, typename UnaryPredicate > 
constexpr ForwardIt 
   partition( ForwardIt first, ForwardIt last, UnaryPredicate p );   
 
template< typename InputIt, typename UnaryFunction > 
constexpr UnaryFunction 
   for_each( InputIt first, InputIt last, UnaryFunction f );   
 
} // namespace std 

Whereas you can only control how to select elements in the
std::partition() algorithm ( ), the std::for_each() algorithm gives
you control over what operation is applied to each element in the given
range ( ). And whereas in the shapes example you could only specify how
to draw a certain kind of shape, in the ThreadPool example you are
completely in charge of deciding what operation is scheduled.

There are two other indicators for the two design patterns you have applied.
First, if you have an object and configure it using an action (you perform
dependency injection), then you are (most likely) using the Strategy design
pattern. If you don’t use the action to configure an object, but if instead the
action is performed directly, then you are (most likely) using the Command
design pattern. In our Calculator example, we did not pass an action to
configure the Calculator, but instead the action was evaluated
immediately. Therefore, we built on the Command pattern.

Alternatively, we could also implement Calculator by means of Strategy:
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//---- <CalculatorStrategy.h> ---------------- 
 
class CalculatorStrategy 
{ 
 public: 
   virtual ~CalculatorStrategy() = default; 
 
   virtual int compute( int i ) const = 0; 
}; 
 
 
//---- <Calculator.h> ---------------- 
 
#include <CalculatorStrategy.h> 
 
class Calculator 
{ 
 public: 
   void set( std::unique_ptr<CalculatorStrategy> operation );   
   void compute( int value );   
 
   // ... 
 
 private: 
   int current_{}; 
   std::unique_ptr<CalculatorStrategy> operation_;  // Requires a default! 
}; 
 
 
//---- <Calculator.cpp> ---------------- 
 
#include <Calculator.h> 
 
void set( std::unique_ptr<CalculatorStrategy> operation )   
{ 
   operation_ = std::move(operation); 
} 
 
void Calculator::compute( int value )   
{ 
   current_ = operation_.compute( value ); 
} 

In this implementation of a Calculator, the Strategy is injected by means
of a set() function ( ). The compute() function uses the injected Strategy



to perform a computation ( ). Note, however, that this approach makes it
more difficult to implement a reasonable undo mechanism.

The second indicator to see whether you are using Command or Strategy is
the undo() operation. If your action provides an undo() operation to roll
back what it has done and encapsulates everything that is needed to perform
the undo(), then you are—most likely—dealing with the Command design
pattern. If your action doesn’t provide an undo() operation, because it’s
focused on how something is done or because it lacks the information to roll
back the operation, then you are—most likely—dealing with the Strategy
design pattern. However, I should explicitly point out that the lack of an
undo() operation is not conclusive evidence of Strategy. It could still be an
implementation of Command if the intent is to specify what should be done.
For instance, the std::for_each() algorithm still expects a Command,
despite the fact that there is no need for an undo() operation. The undo()
operation should be considered an optional feature of the Command design
pattern, not a defining one. In my opinion, undo() is not a strength of the
Command design pattern but a pure necessity: if an action has complete
freedom to do whatever it desires, then only this action alone will be able to
roll the operation back (of course, assuming that you don’t want to store a
complete copy of everything for every call to a Command).

I admit there is no clear separation between these two patterns and that
there is a gray area between them. However, there’s no point in arguing
about whether something is a Command or a Strategy and losing a couple
of friends in the process. More important than agreeing on which one of the
two you are using is exploiting their ability to extract implementation
details and separate concerns. Both design patterns help you isolate changes
and extensions and thus help you follow the SRP and OCP. After all, this
ability may be the reason why there are so many examples of these two
design patterns in the C++ Standard Library.

Analyzing the Shortcomings of the Command Design
Pattern



The advantages of the Command design pattern are similar to those of the
Strategy design pattern: Command helps you decouple from the
implementation details of concrete tasks by introducing some form of
abstraction (for instance, a base class or a concept). This abstraction allows
you to easily add new tasks. Thus, Command satisfies both the SRP and the
OCP.

However, the Command design pattern also has its disadvantages. In
comparison to the Strategy design pattern, the list of disadvantages is pretty
short, though. The only real disadvantage is the added runtime performance
overhead due to the additional indirection if you implement Command by
means of a base class (the classic GoF style). Again, it’s up to you to decide
whether the increased flexibility outweighs the loss of runtime
performance.

In summary, just like the Strategy design pattern, the Command design
pattern is one of the most basic and useful ones in the catalog of design
patterns. You will encounter implementations of Command in many
different situations, both static and dynamic. Thus, understanding the intent,
advantages, and disadvantages of Command will prove useful many times.

GUIDELINE 21: USE COMMAND TO ISOLATE WHAT
THINGS ARE DONE

Apply the Command design pattern with the intent to abstract and
encapsulate an (possibly undoable) action.

Be aware that the line between the Command and the Strategy
design pattern is fluid.

Use Command for both dynamic and static applications.

Guideline 22: Prefer Value Semantics over
Reference Semantics



In “Guideline 19: Use Strategy to Isolate How Things Are Done” and
“Guideline 21: Use Command to Isolate What Things Are Done”, I
introduced you to the Strategy and Command design pattern, respectively.
In both cases, the examples were firmly built on the classic GoF style: they
used dynamic polymorphism by means of an inheritance hierarchy. With
that classic object-oriented style lacking a modern touch, I imagine that by
now all your nail-biting has gotten you in trouble with your manicurist. And
you might be wondering: “Isn’t there another, better way to implement
Strategy and Command? A more ‘modern’ approach?” Yes, rest assured;
there is. And this approach is so important for the philosophy of what we
commonly call “Modern C++” that it definitely justifies a separate
guideline to explain the advantages. I’m pretty sure your manicurist will
understand the reason for this little detour.

The Shortcomings of the GoF Style: Reference
Semantics
The design patterns collected by the Gang of Four and presented in their
book were introduced as object-oriented design patterns. Almost all of the
23 design patterns described in their book are using at least one inheritance
hierarchy and thus are firmly rooted in the realm of OO programming.
Templates, the obvious second choice, did not play any part in the GoF
book. This pure OO style is what I refer to as the GoF style. From today’s
perspective, that style may appear to be an old, outdated way of doing
things in C++, but of course we need to remember that the book was
released in October 1994. At that time, templates may already have been a
part of the language (at least they were officially described in the Annotated
Reference Manual (ARM)), but we didn’t have template-related idioms, and
C++ was still commonly perceived as an OO programming language.
Hence, the common way to use C++ was to primarily use inheritance.

Today we know that the GoF style comes with a number of disadvantages.
One of the most important, and usually one of the most-often mentioned, is
performance:
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Virtual functions increase the runtime overhead and diminish the
compiler’s opportunities to optimize.

Many allocations of small polymorphic objects cost extra runtime,
fragment the memory, and lead to suboptimal cache usage.

The way data is arranged is often counterproductive with respect to
data access schemes.

Performance truly is not one of the strong aspects of the GoF style. Without
going into a complete discussion about all the possible shortcomings of the
GoF style, let’s instead focus on one other disadvantage that I consider of
particular interest: the GoF style falls into what we today call reference
semantics (or sometimes also pointer semantics). This style got its name
because it works primarily with pointers and references. To demonstrate
term reference semantics means and why it usually comes with a rather
negative connotation, let’s take a look at the following code example using
the C++20 std::span class template:

 
#include <cstdlib> 
#include <iostream> 
#include <span> 
#include <vector> 
 
void print( std::span<int> s )   
{ 
   std::cout << " ("; 
   for( int i : s ) { 
      std::cout << ' ' << i; 
   } 
   std::cout << " )\n"; 
} 
 
int main() 
{ 
   std::vector<int> v{ 1, 2, 3, 4 };   
 
   std::vector<int> const w{ v };   
   std::span<int> const s{ v };   
 
   w[2] = 99;  // Compilation error!   
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   s[2] = 99;  // Works!   
 
   // Prints ( 1 2 99 4 ); 
   print( s );   
 
   v = { 5, 6, 7, 8, 9 };   
   s[2] = 99;  // Works!   
 
   // Prints ? 
   print( s );   
 
   return EXIT_SUCCESS; 
} 

The print() function ( ) demonstrates the purpose of std::span. The
std::span class template represents an abstraction for an array. The
print() function can be called with any kind of array (built-in arrays,
std::array, std::vector, etc.) without coupling to any specific type of
array. In the demonstrated example of std::span with a dynamic extent
(no second template argument representing the size of the array), a typical
implementation of std::span contains two data members: a pointer to the
first element of the array, and the size of the array. For that reason,
std::span is considered easy to copy and is usually passed by value. Apart
from that, print() simply traverses the elements of the std::span (in our
case, integers) and prints them via std::cout.

In the main() function, we first create the std::vector<int> v and
immediately fill it with the integers 1, 2, 3, and 4 ( ). Then we create
another std::vector w as a copy of v ( ) and the std::span s ( ). Both w
and s are qualified with const. Directly after that, we try to modify both w
and s at index 2. The attempt to change w fails with a compilation error: w is
declared const, and for that reason it’s not possible to change the contained
elements ( ). The attempt to change s, however, works fine. There will be
no compilation error, despite the fact that s is declared const ( ).

The reason for this is that s is not a copy of v and does not represent a
value. Instead, it represents a reference to v. It essentially acts as a pointer
to the first element of v. Thus, the const qualifier semantically has the
same effect as declaring a pointer const:



std::span<int> const s{ v };  // s acts as pointer to the first element of v 
int* const ptr{ v.data() };   // Equivalent semantical meaning

While the pointer ptr cannot be changed and will refer to the first element
of v throughout its lifetime, the referenced integer can be easily modified.
To prevent an assignment to the integer, you would need to add an
additional const qualifier for the int:

std::span<int const> const s{v};   // s represents a const pointer to a const 
int 
int const* const ptr{ v.data() };  // Equivalent semantical meaning

Since the semantics of a pointer and std::span are equivalent, std::span
obviously falls into the category of reference semantics. And this comes
with a number of additional dangers, as demonstrated in the remainder of
the main() function. As a next step, we print the elements referred to by s (

). Note that instead, you could also pass the vector v directly, as the
std::span provides the necessary conversion constructors to accept
std::vector. The print() function will correctly result in the following
output:

( 1 2 99 4 )

Because we can (and because by now, the numbers 1 through 4 probably
start to sound a little boring), we now assign a new set of numbers to the
vector v ( ). Admittedly, the choice of 5, 6, 7, 8, and 9 is neither
particularly creative nor entertaining, but it will serve its purpose. Directly
afterward, we again write to the second index by means of s ( ) and again
print the elements referred to by s ( ). Of course, we expect the output to
be ( 5 6 99 8 9 ), but unfortunately that is not the case. We might get
the following output:

( 1 2 99 4 )

Maybe this completely shocks you and you end up with a few more gray
hairs.  Perhaps you are merely surprised. Or you knowingly smile and
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nod: yes, of course, undefined behavior! When assigning new values to the
std::vector v, we haven’t just changed the values but also the size of the
vector. Instead of four values, it now needs to store five elements. For that
reason, the vector has (possibly) performed a reallocation and has thus
changed the address of its first element. Unfortunately, the std::span s
didn’t get the note and still firmly holds onto the address of the previous
first element. Hence, when we try to write to v by means of s, we do not
write into the current array of v but to an already discarded piece of
memory that used to be the internal array of v. Classic undefined behavior,
and a classic problem of reference semantics.

“Hey, are you trying to discredit std::span?” you ask. No, I am not trying
to suggest that std::span, and also std::string_view, are bad. On the
contrary, I actually like these two a lot since they provide remarkably
simple and cheap abstractions from all kinds of arrays and strings,
respectively. However, remember that every tool has advantages and
disadvantages. When I use them, I use them consciously, fully aware that
any nonowning reference type requires careful attention to the lifetime of
the value it references. For instance, while I consider both to be very useful
tools for function arguments, I tend to not use them as data members. The
danger of lifetime issues is just too high.

Reference Semantics: A Second Example
“Well, of course I knew that,” you argue. “I also wouldn’t store std::span
for a longer period of time. However, I’m still not convinced that references
and pointers are a problem.” OK, if that first example wasn’t startling
enough, I have a second example. This time I use one of the STL
algorithms, std::remove(). The std::remove() algorithm takes three
arguments: a pair of iterators for the range that is traversed to remove all
elements of a particular value, and a third argument that represents the
value to be removed. In particular, note that the third argument is passed by
a reference-to-const:

template< typename ForwardIt, typename T > 
constexpr ForwardIt remove( ForwardIt first, ForwardIt last, T const& value );



Let’s take a look at the following code example:

 
std::vector<int> vec{ 1, -3, 27, 42, 4, -8, 22, 42, 37, 4, 18, 9 };   
 
auto const pos = std::max_element( begin(vec), end(vec) );   
 
vec.erase( std::remove( begin(vec), end(vec), *pos ), end(vec) );   

We start with the std::vector v, which is initialized with a few random
numbers ( ). Now we are interested in removing all the elements that
represent the greatest value stored in the vector. In our example, that is the
value 42, which is stored in the vector twice. The first step in performing
the removal is to determine the greatest value using the
std::max_element() algorithm. std::max_element() returns an iterator
to the greatest value. If several elements in the range are equivalent to the
greatest element, it returns the iterator to the first such element ( ).

The second step in removing the greatest values is a call to std::remove()
( ). We pass the range of elements using begin(vec) and end(vec), and
the greatest value by dereferencing the pos iterator. Last but not least, we
finish the operation with a call to the erase() member function: we erase
all the values between the position returned by the std::remove()
algorithm and the end of the vector. This sequence of operations is
commonly known as the erase-remove idiom.

We expect that both 42 values are removed from the vector, and therefore
we expect to get the following result:

( 1 -3 27 4 -8 22 37 4 18 9 )

Unfortunately, this expectation does not hold. Instead, the vector now
contains the following values:

( 1 -3 27 4 -8 22 42 37 18 9 )

Note that the vector still contains a 42 but is now missing a 4 instead. The
underlying reason for this misbehavior is, again, reference semantics: by
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passing the dereferenced iterator to the remove() algorithm, we implicitly
state that the value stored in that location should be removed. However,
after removing the first 42, this location holds the value 4. The remove()
algorithm removes all elements with the value 4. Hence, the next value that
is removed is not the next 42 but the next 4, and so on.

“OK, I got it! But that problem is history! Today we don’t use the erase-
remove idiom anymore. C++20 finally provided us with the free
std::erase() function!” Well, I would love to agree with that statement,
but unfortunately I can only acknowledge the existence of the
std::erase() function:

template< typename T, typename Alloc, typename U > 
constexpr typename std::vector<T,Alloc>::size_type 
   erase( std::vector<T,Alloc>& c, U const& value );

The std::erase() function also takes its second argument, the value that
is to be removed, by means of a reference-to-const. Therefore, the problem
that I just described remains. The only way to resolve this problem is to
explicitly determine the greatest element and pass it to the std::remove()
algorithm ( ):

 
std::vector<int> vec{ 1, -3, 27, 42, 4, -8, 22, 42, 37, 4, 18, 9 }; 
 
auto const pos = std::max_element( begin(vec), end(vec) ); 
auto const greatest = *pos;   
 
vec.erase( std::remove( begin(vec), end(vec), greatest ), end(vec) ); 

“Are you seriously suggesting that we shouldn’t use reference parameters
anymore?” No, absolutely not! Of course you should use reference
parameters, for instance, for performance reasons. However, I hope to have
raised a certain awareness. Hopefully, you now understand the problem:
references, and especially pointers, make our life so much harder. It’s
harder to understand the code, and therefore it is easier to introduce bugs
into our code. And pointers in particular raise so many more questions: is it
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a valid pointer or a nullptr? Who owns the resource behind the pointer
and manages the lifetime? Of course, lifetime issues are not much of an
issue since we have expanded our toolbox and have smart pointers at our
disposal. As Core Guideline R.3 clearly states:

A raw pointer (a T*) is non-owning.

In combination with knowing that smart pointers are taking on the
responsibility of ownership, this cleans up the semantics of pointers quite
significantly. But still, despite the fact that smart pointers are of course an
immensely valuable tool and, for good reasons, are celebrated as a huge
achievement of “Modern C++,” in the end they are only a fix for the holes
that reference semantics has torn in the fabric of our ability to reason about
code. Yes, reference semantics makes it harder to understand code and to
reason about the important details, and thus is something we would like to
avoid.

The Modern C++ Philosophy: Value Semantics
“But wait,” I can hear you object, “what other choice do we have? What
should we do? And how else should we cope with inheritance hierarchies?
We can’t avoid pointers there, right?” If you’re thinking something along
these lines, then I have very good news for you: yes, there is a better
solution. A solution that makes your code easier to understand and easier to
reason about, and might even have a positive impact on its performance
(remember we also talked about the negative performance aspects of
reference semantics). The solution is value semantics.

Value semantics is nothing new in C++. The idea was already part of the
original STL. Let’s consider the most famous of the STL containers,
std::vector:

 
std::vector<int> v1{ 1, 2, 3, 4, 5 }; 
 
auto v2{ v1 };   
 
assert( v1 == v2 );   
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assert( v1.data() != v2.data() );   
 
v2[2] = 99;   
 
assert( v1 != v2 );   
 
auto const v3{ v1 };   
 
v3[2] = 99;  // Compilation error! 

We start with a std::vector called v1, filled with five integers. In the next
line, we create a copy of v1, called v2 ( ). Vector v2 is a real copy,
sometimes also referred to as a deep copy, which now contains its own
chunk of memory and its own integers, and doesn’t refer to the integers in
v1.  We can assert that by comparing the two vectors (they prove to be
equal; see ), but the addresses of the first elements are different ( ). And
changing one element in v2 ( ) has the effect that the two vectors are not
equal anymore ( ). Yes, both vectors have their own arrays. They do not
share their content, i.e., they do not try to “optimize” the copy operation.
You might have heard about such techniques, for instance, the copy-on-
write technique. And yes, you might even be aware that this was a common
implementation for std::string prior to C++11. Since C++11, however,
std::string is no longer allowed to use copy-on-write due to its
requirements formulated in the C++ standard. The reason is that this
“optimization” easily proves to be a pessimization in a multithreaded world.
Hence, we can count on the fact that copy construction creates a real copy.

Last but not least, we create another copy called v3, which we declare as
const ( ). If we now try to change a value of v3, we will get a compilation
error. This shows that a const vector does not just prevent adding and
removing elements but that all elements are also considered to be const.

From a semantic perspective, this means that std::vector, just as any
container in the STL, is considered to be a value. Yes, a value, like an int.
If we copy a value, we don’t copy just a part of the value but the entire
value. If we make a value const, it is not just partially const but
completely const. That is the rationale of value semantics. And we’ve seen
a couple of advantages already: values are easier to reason about than
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pointers and references. For instance, changing a value does not have an
impact on some other value. The change happens locally, not somewhere
else. This is an advantage that compilers heavily exploit for their
optimization efforts. Also, values don’t make us think about ownership. A
value is in charge of its own content. A value also makes it (much) easier to
think about threading issues. That does not mean that there are no problems
anymore (you wish!), but the code is definitely easier to understand. Values
just don’t leave us with a lot of questions.

“OK, I get the point about code clarity,” you argue, “but what about
performance? Isn’t it super expensive to deal with copy operations all the
time?” Well, you are correct; copy operations can be expensive. However,
they are only expensive if they really happen. In real code, we can often
rely on copy elision, move semantics, and well…pass-by-reference.  Also,
we have already seen that, from a performance point of view, value
semantics might give us a performance boost. Yes, of course I am referring
to the std::variant example in “Guideline 17: Consider std::variant for
Implementing Visitor”. In that example, the use of values of type
std::variant has significantly improved our performance because of
fewer indirections due to pointers and a much better memory layout and
access pattern.

Value Semantics: A Second Example
Let’s take a look at a second example. This time we consider the following
to_int() function:

int to_int( std::string_view );

This function parses the given string (and yes, I am using
std::string_view for the purpose of performance) and converts it to an
int. The most interesting question for us now is how the function should
deal with errors, or in other words, what the function should do if the string
cannot be converted to an int. The first option would be to return 0 for that
case. This approach, however, is questionable, because 0 is a valid return
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from the to_int() function. We would not be able to distinguish success
from failure.  Another possible approach would be to throw an exception.
Although exceptions may be the C++ native tool to signal error cases, for
this particular problem, depending on your personal style and preferences,
this may appear as overkill to you. Also, knowing that exceptions cannot be
used in a large fraction of the C++ community, that choice might limit the
usability of the function.

A third possibility is change the signature by a little bit:

bool to_int( std::string_view s, int& );

Now the function takes a reference to a mutable int as the second
parameter and returns a bool. If it succeeds, the function returns true and
sets the passed integer; if it fails, the function returns false and leaves the
int alone. While this may seem like a reasonable compromise to you, I
would argue that we have now strayed further into the realm of reference
semantics (including all potential misuse). At the same time, the clarity of
the code has diminished: the most natural way to return a result is via the
return value, but now the result is produced by an output value. This, for
instance, prevents us from assigning the result to a const value. Therefore,
I would rate this as the least favorable approach so far.

The fourth approach is to return by pointer:

std::unique_ptr<int> to_int( std::string_view );

Semantically, this approach is pretty attractive: if it succeeds, the function
returns a valid pointer to an int; if it fails, it returns a nullptr. Hence,
code clarity is improved, as we can clearly distinguish between these two
cases. However, we gain this advantage at the cost of a dynamic memory
allocation, the need to deal with lifetime management using
std::unique_ptr, and we’re still lingering in the realm of reference
semantics. So the question is: how can we leverage the semantic advantages
but stick to value semantics? The solution comes in the form of
std::optional:
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std::optional<int> to_int( std::string_view );

std::optional is a value type, which represents any other value, in our
example, an int. Therefore, std::optional can take all the values that an
int can take. The specialty of std::optional, however, is that it adds one
more state to the wrapped value, a state that represents no value. Thus, our
std::optional is an int that may or may not be present:

#include <charconv> 
#include <cstdlib> 
#include <optional> 
#include <sstream> 
#include <string> 
#include <string_view> 
 
std::optional<int> to_int( std::string_view sv ) 
{ 
   std::optional<int> oi{}; 
   int i{}; 
 
   auto const result = std::from_chars( sv.data(), sv.data() + sv.size(), i ); 
   if( result.ec != std::errc::invalid_argument ) { 
      oi = i; 
   } 
 
   return oi; 
} 
 
int main() 
{ 
   std::string value = "42"; 
 
   if( auto optional_int = to_int( value ) ) 
   { 
      // ... Success: the returned std::optional contains an integer value 
   } 
   else 
   { 
      // ... Failure: the returned std::optional does not contain a value 
   } 
}

Semantically, this is equivalent to the pointer approach, but we don’t pay
the cost of dynamic memory allocation, and we don’t have to deal with
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lifetime management.  This solution is semantically clear, understandable,
and efficient.

Prefer to Use Value Semantics to Implement Design
Patterns
“And what about design patterns?” you ask. “Almost all GoF patterns are
based on inheritance hierarchies and therefore reference semantics. How
should we deal with this?” That is an excellent question. And it provides us
with a perfect bridge to the next guideline. To give a short answer here: you
should prefer to implement design patterns using a value semantics
solution. Yes, seriously! These solutions usually lead to more
comprehensive, maintainable code and (often) better performance.

GUIDELINE 22: PREFER VALUE SEMANTICS TO
REFERENCE SEMANTICS

Be aware that reference semantics make it harder to understand
code;

Prefer the semantic clarity of value semantics.

Guideline 23: Prefer a Value-Based
Implementation of Strategy and Command
In “Guideline 19: Use Strategy to Isolate How Things Are Done”, I
introduced you to the Strategy design pattern, and in “Guideline 21: Use
Command to Isolate What Things Are Done”, I introduced you to the
Command design pattern. I demonstrated that these two design patterns are
essential decoupling tools in your daily toolbox. However, in “Guideline
22: Prefer Value Semantics over Reference Semantics”, I gave you the idea
that it’s preferable to use value semantics instead of reference semantics.
And this of course raises the question: how can you apply that wisdom for
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the Strategy and Command design patterns? Well, here is one possible value
semantics solution: draw on the abstracting power of std::function.

Introduction to std::function
In case you have not yet heard about std::function, allow me to
introduce you. std::function represents an abstraction for a callable (e.g.,
a function pointer, function object, or lambda). The only requirement is that
the callable satisfies a specific function type, which is passed as the only
template parameter to std::function. The following code gives an
impression:

 
#include <cstdlib> 
#include <functional> 
 
void foo( int i ) 
{ 
   std::cout << "foo: " << i << '\n'; 
} 
 
int main() 
{ 
   // Create a default std::function instance. Calling it results 
   // in a std::bad_function_call exception 
   std::function<void(int)> f{};   
 
   f = []( int i ){  // Assigning a callable to 'f'   
      std::cout << "lambda: " << i << '\n'; 
   }; 
 
   f(1);  // Calling 'f' with the integer '1'   
 
   auto g = f;  // Copying 'f' into 'g'   
 
   f = foo;  // Assigning a different callable to 'f'   
 
   f(2);  // Calling 'f' with the integer '2'   
   g(3);  // Calling 'g' with the integer '3'   
 
   return EXIT_SUCCESS; 
} 



In the main() function, we create an instance of std::function, called f (
). The template parameter specifies the required function type. In our

example, this is void(int). “Function type…” you say. “Don’t you mean
function pointer type?” Well, since this is indeed something that you might
have rarely seen before, allow me to explain what a function type is and
contrast it with the thing you’ve probably seen more often: function
pointers. The following example uses both a function type and a function
pointer type:

using FunctionType        = double(double); 
using FunctionPointerType = double(*)(double); 
// Alternatively: 
// using FunctionPointerType = FunctionType*;

The first line shows a function type. This type represents any function that
takes a double and returns a double. Examples for this function type are
the corresponding overloads of std::sin, std::cos, std::log, or
std::sqrt. The second line shows a function pointer type. Note the little
asterisk in parentheses—that makes it a pointer type. This type represents
the address of one function of function type FunctionType. Hence, the
relationship between function types and function pointer types is pretty
much like the relationship between an int and a pointer to an int: while
there are many int values, a pointer to an int stores the address of exactly
one int.

Back to the std::function example: initially, the instance is empty,
therefore you cannot call it. If you still try to do so, the std::function
instance will throw the std::bad_function_call exception at you. Better
not provoke it. Let’s rather assign some callable that fulfills the function
type requirements, for instance, a (possibly stateful) lambda ( ). The
lambda takes an int and doesn’t return anything. Instead, it prints that it
has been called by means of a descriptive output message ( ):

lambda: 1
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OK, that worked well. Let’s try something else: we now create another
std::function instance g by means of f ( ). Then we assign another
callable to f ( ). This time, we assign a pointer to the function foo().
Again, this callable fulfills the requirements of the std::function
instance: it takes an int and returns nothing. Directly after the assignment,
you call f with the int 2, which triggers the expected output ( ):

foo: 2

That was probably an easy one. However, the next function call is much
more interesting. If you call g with the integer 3 ( ), the output
demonstrates that std::function is firmly based on value semantics:

lambda: 3

During the initialization of g, the instance f was copied. And it was copied
as a value should be copied: it does not perform a “shallow copy,” which
would result in g being affected when f is subsequently changed, but it
performs a complete copy (deep copy), which includes a copy of the
lambda.  Thus, changing f does not affect g. That’s the benefit of value
semantics: the code is easy and intuitive, and you don’t have to be afraid
that you are accidentally breaking something anywhere else.

At this point, the functionality of std::function may feel a little like
magic: how is it possible that the std::function instance can take any
kind of callable, including things like lambdas? How can it store any
possible type, even types that it can’t know, and even though these types
apparently have nothing in common? Don’t worry: in Chapter 8, I will give
you a thorough introduction to a technique called Type Erasure, which is
the magic behind std::function.

Refactoring the Drawing of Shapes
std::function provides everything we need to refactor our shape-drawing
example from “Guideline 19: Use Strategy to Isolate How Things Are
Done”: it represents the abstraction of a single callable, which is pretty
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much exactly what we need to replace the DrawCircleStrategy and
DrawSquareStrategy hierarchies, which each contain a single virtual
function. Hence, we rely on the abstracting power of std::function:

 
//---- <Shape.h> ---------------- 
 
class Shape 
{ 
 public: 
   virtual ~Shape() = default; 
   virtual void draw( /*some arguments*/ ) const = 0; 
}; 
 
 
//---- <Circle.h> ---------------- 
 
#include <Shape.h> 
#include <functional> 
#include <utility> 
 
class Circle : public Shape 
{ 
 public: 
   using DrawStrategy = std::function<void(Circle const&, /*...*/)>;   
 
   explicit Circle( double radius, DrawStrategy drawer )   
      : radius_( radius ) 
      , drawer_( std::move(drawer) )   
   { 
      /* Checking that the given radius is valid and that 
         the given 'std::function' instance is not empty */ 
   } 
 
   void draw( /*some arguments*/ ) const override 
   { 
      drawer_( *this, /*some arguments*/ ); 
   } 
 
   double radius() const { return radius_; } 
 
 private: 
   double radius_; 
   DrawStrategy drawer_;   
}; 
 



 
//---- <Square.h> ---------------- 
 
#include <Shape.h> 
#include <functional> 
#include <utility> 
 
class Square : public Shape 
{ 
 public: 
   using DrawStrategy = std::function<void(Square const&, /*...*/)>;   
 
   explicit Square( double side, DrawStrategy drawer )   
      : side_( side ) 
      , drawer_( std::move(drawer) )   
   { 
      /* Checking that the given side length is valid and that 
         the given 'std::function' instance is not empty */ 
   } 
 
   void draw( /*some arguments*/ ) const override 
   { 
      drawer_( *this, /*some arguments*/ ); 
   } 
 
   double side() const { return side_; } 
 
 private: 
   double side_; 
   DrawStrategy drawer_;   
}; 

First, in the Circle class, we add a type alias for the expected type of
std::function ( ). This std::function type represents any callable that
can take a Circle, and potentially several more drawing-related arguments,
and does not return anything. Of course, we also add the corresponding type
alias in the Square class ( ). In the constructors of both Circle and
Square, we now take an instance of type std::function ( ) as a
replacement for the pointer to a Strategy base class (Draw Cir cleStrategy
or DrawSquareStrategy). This instance is immediately moved ( ) into the
data member drawer_, which is also of type DrawStrategy ( ).



“Hey, why are you taking the std::function instance by value? Isn’t that
terribly inefficient? Shouldn’t we prefer to pass by reference-to-const?” In
short: no, passing by value is not inefficient, but an elegant compromise to
the alternatives. I admit, though, that this may be surprising. Since this is
definitely an implementation detail worth noting, let’s take a closer look.

If we used a reference-to-const, we would experience the disadvantage that
rvalues would be unnecessarily copied. If we were passed an rvalue, this
rvalue would bind to the (lvalue) reference-to-const. However, when
passing this reference-to-const to the data member, it would be copied.
Which is not our intention: naturally we want it to be moved. The simple
reason is that we cannot move from const objects (even when using
std::move). So, to efficiently deal with rvalues, we would have to provide
overloads of the Circle and Square constructors that would take a
DrawStrategy by means of an rvalue reference (DrawStrategy&&). For the
sake of performance, we would provide two constructors for both Circle
and Square.

The approach to provide two constructors (one for lvalues, one for rvalues)
does work and is efficient, but I would not necessarily call it elegant. Also,
we should probably save our colleagues the trouble of having to deal with
that.  For this reason, we exploit the implementation of std::function.
std::function provides both a copy constructor and a move constructor,
and so we know that it can be moved efficiently. When we pass a
std::function by value, either the copy constructor or the move
constructor will be called. If we are passed an lvalue, the copy constructor
is called, copying the lvalue. Then we would move that copy into the data
member. In total, we would perform one copy and one move to initialize the
drawer_ data member. If we are passed an rvalue, the move constructor is
called, moving the rvalue. The resulting argument strategy is then moved
into the data member drawer_. In total, we would perform two move
operations to initialize the drawer_ data member. Therefore, this form
represents a great compromise: it is elegant, and there is hardly any
difference in efficiency.

37

38



Once we’ve refactored the Circle and Square classes, we can implement
different drawing strategies in any form we like (in the form of a function, a
function object, or a lambda). For instance, we can implement the following
OpenGLCircleStrategy as a function object:

 
//---- <OpenGLCircleStrategy.h> ---------------- 
 
#include <Circle.h> 
 
class OpenGLCircleStrategy 
{ 
 public: 
   explicit OpenGLCircleStrategy( /* Drawing related arguments */ ); 
 
   void operator()( Circle const& circle, /*...*/ ) const;   
 
 private: 
   /* Drawing related data members, e.g. colors, textures, ... */ 
}; 

The only convention we need to follow is that we need to provide a call
operator that takes a Circle and potentially several more drawing-related
arguments, and doesn’t return anything (fulfill the function type
void(Circle const&, /*…*/)) ( ).

Assuming a similar implementation for an OpenGLSquareStrategy, we can
now create different kinds of shapes, configure them with the desired
drawing behavior, and finally draw them:

#include <Circle.h> 
#include <Square.h> 
#include <OpenGLCircleStrategy.h> 
#include <OpenGLSquareStrategy.h> 
#include <memory> 
#include <vector> 
 
int main() 
{ 
   using Shapes = std::vector<std::unique_ptr<Shape>>; 
 
   Shapes shapes{}; 
 



   // Creating some shapes, each one 
   //   equipped with the corresponding OpenGL drawing strategy 
   shapes.emplace_back( 
      std::make_unique<Circle>( 2.3, OpenGLCircleStrategy(/*...red...*/) ) ); 
   shapes.emplace_back( 
      std::make_unique<Square>( 1.2, OpenGLSquareStrategy(/*...green...*/) ) 
); 
   shapes.emplace_back( 
      std::make_unique<Circle>( 4.1, OpenGLCircleStrategy(/*...blue...*/) ) ); 
 
   // Drawing all shapes 
   for( auto const& shape : shapes ) 
   { 
      shape->draw(); 
   } 
 
   return EXIT_SUCCESS; 
}

The main() function is very similar to the original implementation using
the classic Strategy implementation (see “Guideline 19: Use Strategy to
Isolate How Things Are Done”). However, this nonintrusive, base class–
free approach with std::function further reduces the coupling. This
becomes evident in the dependency graph for this solution (see Figure 5-9):
we can implement the drawing functionality in any form we want (as a free
function, a function object, or a lambda) and we don’t have to abide by the
requirements of a base class. Also, by means of std::function we have
automatically inverted the dependencies (see “Guideline 9: Pay Attention to
the Ownership of Abstractions”).





Figure 5-9. Dependency graph for the std::function solution

Performance Benchmarks
“I like the flexibility, the freedom. This is great! But what about
performance?” Yes, spoken like a true C++ developer. Of course
performance is important. Before showing you the performance results,
though, let me remind you of the benchmark scenario that we also used to
get the numbers for Table 4-2 in “Guideline 16: Use Visitor to Extend
Operations”. For the benchmark, I have implemented four different kinds of
shapes (circles, squares, ellipses, and rectangles). Again, I’m running
25,000 translate operations on 10,000 randomly created shapes. I use both
GCC 11.1 and Clang 11.1, and for both compilers I’m adding only the -O3
and -DNDEBUG compilation flags. The platform I’m using is macOS Big Sur
(version 11.4) on an 8-Core Intel Core i7 with 3.8 GHz, 64 GB of main
memory.

With this information in mind, you are ready for the performance results.
Table 5-1 shows the performance numbers for the Strategy-based
implementation of the drawing example and the resulting solution using
std::function.

Table 5-1. Performance results for different Strategy
implementations

Strategy implementations GCC 11.1 Clang 11.1

Object-oriented solution 1.5205 s 1.1480 s

std::function 2.1782 s 1.4884 s

Manual implementation of std::function 1.6354 s 1.4465 s

Classic Strategy 1.6372 s 1.4046 s

For reference purposes, the first line shows the performance of the object-
oriented solution from “Guideline 15: Design for the Addition of Types or



Operations”. As you can see, this solution gives the best performance. This
is not unexpected, however: since the Strategy design pattern, irrespective
of the actual implementation, introduces additional overhead, the
performance is anticipated to be reduced.

What is not expected, though, is that the std::function implementation
incurs a performance overhead (even a significant one in case of GCC). But
wait, before you throw this approach into your mental trash can, consider
the third line. It shows a manual implementation of std::function using
Type Erasure, the technique I will explain in Chapter 8. This
implementation performs much better, in fact as good (or nearly as good for
Clang) as a classic implementation of the Strategy design pattern (see the
fourth line). This result demonstrates that the problem is not value
semantics but the specific implementation details of std::function.  In
summary, a value semantics approach is not worse in terms of performance
than the classic approach, but instead, as shown before, it improves many
important aspects of your code.

Analyzing the Shortcomings of the std::function
Solution
Overall, the std::function implementation of the Strategy design pattern
provides a number of benefits. First, your code gets cleaner and more
readable since you don’t have to deal with pointers and the associated
lifetime management (for instance, using std::unique_ptr), and since you
don’t experience the usual problems with reference semantics (see
“Guideline 22: Prefer Value Semantics over Reference Semantics”).
Second, you promote loose coupling. Very loose coupling, actually. In this
context, std::function acts like a compilation firewall, which protects
you from the implementation details of the different Strategy
implementations but at the same time provides enormous flexibility for
developers on how to implement the different Strategy solutions.

Despite these upsides, no solution comes without downsides—even the
std::function approach has its disadvantages. I have already pointed out
the potential performance disadvantage if you rely on the standard
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implementation. While there are solutions to minimize this effect (see
Chapter 8), it’s still something to consider in your codebase.

There is also a design-related issue. std::function can replace only a
single virtual function. If you need to abstract multiple virtual functions,
which could occur if you want to configure multiple aspects using the
Strategy design pattern, or if you need an undo() function in the Command
design pattern, you would have to use multiple std::function instances.
This would not only increase the size of a class due to the multiple data
members, but also incur an interface burden due to the question of how to
elegantly handle passing multiple std::function instances. For this
reason, the std::function approach works best for replacing a single or a
very small number of virtual functions. Still, this does not mean that you
can’t use a value-based approach for multiple virtual functions: if you
encounter that situation, consider generalizing the approach by applying the
technique used for std::function directly to your type. I will explain how
to do that in Chapter 8.

Despite these shortcomings, the value semantics approach proves to be a
terrific choice for the Strategy design pattern. The same is true for the
Command design pattern. Therefore, keep this guideline in mind as an
essential step towards modern C++.

GUIDELINE 23: PREFER A VALUE-BASED
IMPLEMENTATION OF STRATEGY AND COMMAND

Consider using std::function to implement the Strategy or
Command design pattern.

Take the performance disadvantages of std::function into
account.

Be aware that Type Erasure is a generalization of the value
semantics approach for Strategy and Command.



1  See “Guideline 2: Design for Change”.

2  You may correctly argue that there are multiple solutions for this problem: you could have
one source file per graphics library, you could rely on the preprocessor by sprinkling a couple
of #ifdefs across the code, or you could implement an abstraction layer around the graphics
libraries. The first two options feel like technical workarounds to a flawed design. The latter
option, however, is a reasonable, alternative solution to the one that I will propose. It’s a
solution based on the Facade design pattern, which, unfortunately, I don’t cover in this book.

3  David Thomas and Andrew Hunt, The Pragmatic Programmer.

4  Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software.

5  Please explicitly note that I said naive. Although the code example is didactically a little
questionable, I will show a common misconception before showing a proper implementation.
My hope is that this way you will never fall into this common trap.

6  Although this is not a book about implementation details, please allow me to highlight one
implementation detail that I find to be the source of many questions in my training classes. I’m
certain you’ve heard about the Rule of 5—if not, please see the C++ Core Guidelines. Hence,
you realize that the declaration of a virtual destructor disables the move operations. Strictly
speaking, this is a violation of the Rule of 5. However, as Core Guideline C.21 explains, for
base classes this is not considered to be a problem, as long as the base class does not contain
any data members.

7  As I have referenced Core Guideline C.21 before, it is also worth mentioning that both the
Circle and Square classes fulfill the Rule of 0; see Core Guideline C.20. By not falling into
the habit of adding a destructor, the compiler itself generates all special member functions for
both classes. And yes, worry not—the destructor is still virtual since the base class destructor is
virtual.

8  See “Guideline 18: Beware the Performance of Acyclic Visitor” for a discussion about the
Acyclic Visitor design pattern.

9  I should explicitly state that it does not work in dynamic polymorphism. It does work in static
polymorphism, even quite well. Consider, for instance, templates and function overloading.

10  Andrei Alexandrescu, Modern C++ Design: Generic Programming and Design Patterns
Applied (Addison-Wesley, 2001).

11  Sean Parent, “Inheritance Is the Base Class Of Evil”, GoingNative, 2013.

12  According to Sean Parent, there are no polymorphic types, only polymorphic usage of similar
types; see “Better Code: Runtime Polymorphism” from the NDC London conference in 2017.
My statement supports that opinion.

13  Another example of inheritance creating coupling is discussed in Herb Sutter’s Exceptional
C++: 47 Engineering Puzzles, Programming Problems, and Exception-Safety Solutions
(Pearson Education).

14  Are they really to blame for this habit? Since they’ve been taught that this is the way to go for
decades, who can blame them for thinking this way?
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https://oreil.ly/5HwgM


15  Michael C. Feathers, Working Effectively with Legacy Code.

16  Programming by difference is a rather extreme form of inheritance-based programming,
where even small differences are expressed by introducing a new derived class. See Michael’s
book for more details.

17  See, for instance, the Strategy design pattern in “Guideline 19: Use Strategy to Isolate How
Things Are Done”, the Observer design pattern in “Guideline 25: Apply Observers as an
Abstract Notification Mechanism”, the Adapter design pattern in “Guideline 24: Use Adapters
to Standardize Interfaces”, the Decorator design pattern in “Guideline 35: Use Decorators to
Add Customization Hierarchically”, or the Bridge design pattern in “Guideline 28: Build
Bridges to Remove Physical Dependencies”.

18  Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software.

19  Yes, it follows the SOLID principles, although of course by means of the classic form of the
Command design pattern. If you are right now biting your fingernails in frustration or simply
wondering if there isn’t a better way, then please be patient. I will demonstrate a much nicer,
much more “modern” solution in “Guideline 22: Prefer Value Semantics over Reference
Semantics”.

20  The given ThreadPool class is far from being complete and primarily serves as an illustration
for the Command design pattern. For a working, professional implementation of a thread pool,
please refer to Anthony William’s book C++ Concurrency in Action, 2nd ed. (Manning).

21  This is another example of my statement that design patterns are not about implementation
details; see “Guideline 12: Beware of Design Pattern Misconceptions”.

22  For the complete shape example, see “Guideline 19: Use Strategy to Isolate How Things Are
Done”.

23  Margaret A. Ellis and Bjarne Stroustrup, The Annotated C++ Reference Manual (Addison-
Wesley, 1990).

24  To get an overview of C++ performance aspects in general and performance-related issues
with inheritance hierarchies in particular, refer to Kurt Guntheroth’s book, Optimized C{plus}
{plus} (O’Reilly).

25  A possible solution for that is to employ techniques from data-oriented design; see Richard
Fabian, Data-Oriented Design: Software Engineering for Limited Resources and Short
Schedules.

26  Mark my choice of words: “We might get the following output.” Indeed, we might get this
output but also something else. It depends, as we have inadvertently entered the realm of
undefined behavior. Therefore, this output is my best guess, not a guarantee.

27  Now not only your manicurist but also your hairdresser has work to do…

28  More gray hairs, more work for your hairdresser.

29  I should explicitly point out that the notion of a “deep copy” depends on the type T of
elements in the vector: if T performs a deep copy, then so does the std::vector, but if T
performs a shallow copy, then semantically std::vector also performs a shallow copy.
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30  The best and most complete introduction to move semantics is Nicolai Josuttis’s book on the
subject, C++ Move Semantics - The Complete Guide (NicoJosuttis, 2020).

31  See Patrice Roy’s CppCon 2016 talk, “The Exception Situation”, for a similar example and
discussion.

32  Yet this is exactly the approach taken by the std::atoi() function.

33  In his standard proposal P0709, Herb Sutter explains that 52% of C++ developers have no or
limited access to exceptions.

34  The experienced C++ developer also knows that C++23 will bless us with a very similar type
called std::expected. In a few years, this might be the appropriate way to write the
to_int() function.

35  From a functional programming point of view, std::optional represents a monad. You’ll
find much more valuable information on monads and functional programming in general in
Ivan Čukić’s book, Functional Programming in C++.

36  In this example, the std::function object performs a deep copy, but generally speaking,
std::function copies the contained callable according to its copy semantics (“deep” or
“shallow”). std::function has no way of forcing a deep copy.

37  This implementation detail is explained thoroughly by Nicolai Josuttis in this CppCon 2017
talk, “The Nightmare of Move Semantics for Trivial Classes”.

38  One more example of the KISS principle.

39  A discussion about the reasons for the performance deficiencies of some std::function
implementations would go beyond the scope and purpose of this book. Still, please keep this
detail in mind for performance-critical sections of your code.
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Chapter 6. The Adapter,
Observer, and CRTP Design
Patterns

In this chapter, we turn our attention to three must-know design patterns:
the two GoF design patterns, Adapter and Observer, and the Curiously
Recurring Template Pattern (CRTP) design pattern.

In “Guideline 24: Use Adapters to Standardize Interfaces”, we talk about
making incompatible things fit together by adapting interfaces. To achieve
this, I will show you the Adapter design pattern and its application in both
inheritance hierarchies and generic programming. You will also get an
overview of different kinds of Adapters, including object, class, and
function Adapters.

In “Guideline 25: Apply Observers as an Abstract Notification
Mechanism”, we will deal with how to observe state change and how to get
notified about it. In this context, I will introduce you to the Observer design
pattern, one of the most famous and most commonly used design patterns.
We will talk about the classic, GoF-style Observer, and also how to
implement the Observer in modern C++.

In “Guideline 26: Use CRTP to Introduce Static Type Categories”, we will
turn our attention to the CRTP. I will show you how to use CRTP to define a
compile-time relationship between a family of related types and how to
properly implement a CRTP base class.

In “Guideline 27: Use CRTP for Static Mixin Classes”, I will continue the
CRTP story by showing you how CRTP can be used to create compile-time
mixin classes. We will also see the difference between semantic inheritance,
where it is used to create an abstraction, and technical inheritance, where it



is used as an implementation detail for technical elegance and convenience
only.

Guideline 24: Use Adapters to Standardize
Interfaces
Let’s assume that you have implemented the Document example from
“Guideline 3: Separate Interfaces to Avoid Artificial Coupling”, and that,
because you properly adhere to the Interface Segregation Principle (ISP),
you’re reasonably happy with the way it works:

class JSONExportable 
{ 
 public: 
   // ... 
   virtual ~JSONExportable() = default; 
 
   virtual void exportToJSON( /*...*/ ) const = 0; 
   // ... 
}; 
 
class Serializable 
{ 
 public: 
   // ... 
   virtual ~Serializable() = default; 
 
   virtual void serialize( ByteStream& bs, /*...*/ ) const = 0; 
   // ... 
}; 
 
class Document 
   : public JSONExportable 
   , public Serializable 
{ 
 public: 
   // ... 
};

However, one day you’re required to introduce the Pages document
format.  Of course, it is similar to the Word document that you already have1



in place, but unfortunately, you’re not familiar with the details of the Pages
format. To make things worse, you don’t have a lot of time to get familiar
with the format, because you have way too many other things to do.
Luckily, you know about a quite reasonable, open source implementation
for that format: the OpenPages class:

class OpenPages 
{ 
 public: 
   // ... 
   void convertToBytes( /*...*/ ); 
}; 
 
void exportToJSONFormat( OpenPages const& pages, /*...*/ );

On the bright side, this class provides about everything you need for your
purposes: a convertToBytes() member function to serialize the content of
the document, and the free exportToJSONFormat() function to convert the
Pages document into the JSON format. Unfortunately, it does not fit your
interface expectations: instead of the convertToBytes() member function,
you expect a serialize() member function. And instead of the free
exportToJSONFormat() function, you expect the exportToJSON()
member function. Ultimately, of course, the third-party class does not
inherit from your Document base class, which means that you can’t easily
incorporate the class into your existing hierarchy. However, there is a
solution to this problem: a seamless integration using the Adapter design
pattern.

The Adapter Design Pattern Explained
The Adapter design pattern is another one of the classic GoF design
patterns. It’s focused on standardizing interfaces and helping nonintrusively
add functionality into an existing inheritance hierarchy.



THE ADAPTER DESIGN PATTERN
Intent: “Convert the interface of a class into another interface clients expect. Adapter
lets classes work together that couldn’t otherwise because of incompatible interfaces.”

Figure 6-1 shows the UML diagram for your Adapter scenario: you already
have the Document base class in place (we ignore the JSONExportable and
Serializable interfaces for a second) and have already implemented a
couple of different kinds of documents (for instance, with the Word class).
The new addition to this hierarchy is the Pages class.

2



Figure 6-1. The UML representation of the Adapter design pattern

The Pages class acts as a wrapper to the third-party OpenPages class:

 
class Pages : public Document 
{ 
 public: 
   // ... 
   void exportToJSON( /*...*/ ) const override 
   { 
      exportToJSONFormat(pages, /*...*/);   
   } 
 



   void serialize( ByteStream& bs, /*...*/ ) const override 
   { 
      pages.convertToBytes(/*...*/);   
   } 
   // ... 
 
 private: 
   OpenPages pages;  // Example of an object adapter 
}; 

Pages implements the Document interface by forwarding the calls to the
corresponding OpenPages functions: a call to exportToJSON() is
forwarded to the free exportToJSONFormat() function ( ), and the call to
serialize() is forwarded to the convertToBytes() member function ( ).

With the Pages class, you can easily integrate the third-party
implementation into your existing hierarchy. Very easily indeed: you can
integrate it without having to modify it in any way. This nonintrusive nature
of the Adapter design pattern is what you should consider one of the
greatest strengths of the Adapter design pattern: anyone can add an Adapter
to adapt an interface to another, existing interface.

In this context, the Pages class serves as an abstraction from the actual
implementation details in the OpenPages class. Therefore, the Adapter
design pattern separates the concerns of the interface from the
implementation details. This nicely fulfills the Single-Responsibility
Principle (SRP) and blends well with the intention of the Open-Closed
Principle (OCP) (see “Guideline 2: Design for Change” and “Guideline 5:
Design for Extension”).

In a way, the Pages Adapter works as an indirection and maps from one set
of functions to another one. Note that it is not strictly necessary to map
from one function to exactly one other function. On the contrary, you have
complete flexibility on how to map the expected set of functions onto the
available set of functions. Thus, Adapter does not necessarily represent a 1-
to-1 relationship, but can also support a 1-to-N relationship.

Object Adapters Versus Class Adapters
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The Pages class is an example of a so-called object adapter. This term
refers to the fact that you store an instance of the wrapped type.
Alternatively, given that the wrapped type is part of an inheritance
hierarchy, you could store a pointer to the base class of this hierarchy. This
would allow you to use the object adapter for all types that are part of the
hierarchy, giving the object adapter a considerable boost in flexibility.

In contrast, there is also the option to implement a so-called class adapter:

 
class Pages : public Document 
            , private OpenPages  // Example of a class adapter   
{ 
 public: 
   // ... 
   void exportToJSON( /*...*/ ) const override 
   { 
      exportToJSONFormat(*this, /*...*/); 
   } 
 
   void serialize( ByteStream& bs, /*...*/ ) const override 
   { 
      this->convertToBytes(/*...*/); 
   } 
   // ... 
}; 

Instead of storing an instance of the adapted type, you would inherit from it
(if possible, nonpublicly) and implement the expected interface accordingly
( ). However, as discussed in “Guideline 20: Favor Composition over
Inheritance”, it is preferable to build on composition. In general, object
adapters prove to be much more flexible than class adapters and thus should
be your favorite. There are only a few reasons why you would prefer a class
adapter:

If you have to override a virtual function.

If you need access to a protected member function.

If you require the adapted type to be constructed before another base
class.



If you need to share a common virtual base class or override the
construction of a virtual base class.

If you can draw significant advantage from the Empty Base
Optimization (EBO).

Otherwise, and this applies to most cases, you should prefer an object
adapter.

“I like this design pattern—it’s powerful. However, I just remembered that
you recommended using the name of the design pattern in the code to
communicate intent. Shouldn’t the class be called PagesAdapter?” You
make an excellent point. And I’m happy that you remember “Guideline 14:
Use a Design Pattern’s Name to Communicate Intent”, in which I indeed
argued that the name of the pattern helps to understand the code. I admit
that in this case, I’m open to both naming conventions. While I do see the
advantages of the name PagesAdapter, as this immediately communicates
that you built on the Adapter design pattern, I don’t consider it a necessity
to communicate the fact that this class represents an adapter. To me, the
Adapter feels like an implementation detail in this situation: I do not need to
know that the Pages class doesn’t implement all the details itself, but uses
the OpenPages class for that. That’s why I said to “consider using the
name.” You should decide on a case-by-case basis.

Examples from the Standard Library
One useful application of the Adapter design pattern is to standardize the
interface of different kinds of containers. Let’s assume the following Stack
base class:

 
//---- <Stack.h> ---------------- 
 
template< typename T > 
class Stack 
{ 
 public: 
   virtual ~Stack() = default; 
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   virtual T& top() = 0;   
   virtual bool empty() const = 0;   
   virtual size_t size() const = 0;   
   virtual void push( T const& value ) = 0;   
   virtual void pop() = 0;   
}; 

This Stack class provides the necessary interface to access the top element
of the stack ( ), check if the stack is empty ( ), query the size of the stack (

), push an element onto the stack ( ), and remove the top element of the
stack ( ). This base class can now be used to implement different Adapters
for various data structures, such as std::vector:

//---- <VectorStack.h> ---------------- 
 
#include <Stack.h> 
 
template< typename T > 
class VectorStack : public Stack<T> 
{ 
 public: 
   T& top() override { return vec_.back(); } 
   bool empty() const override { return vec_.empty(); } 
   size_t size() const override { return vec_.size(); } 
   void push( T const& value ) override { vec_.push_back(value); } 
   void pop() override { vec_.pop_back(); } 
 
 private: 
   std::vector<T> vec_; 
};

You worry, “Do you seriously suggest implementing a stack by an abstract
base class? Aren’t you worried about the performance implications? For
every use of a member function, you have to pay with a virtual function
call!” No, of course I don’t suggest that. Obviously, you are correct, and I
completely agree with you: from a C++ perspective, this kind of container
feels strange and very inefficient. Because of efficiency, we usually realize
the same idea via class templates. This is the approach taken by the C++
Standard Library in the form of the three STL classes called Container
adaptors: std::stack, std::queue, and std::priority_queue:
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template< typename T 
        , typename Container = std::deque<T> > 
class stack; 
 
template< typename T 
        , typename Container = std::deque<T> > 
class queue; 
 
template< typename T 
        , typename Container = std::vector<T> 
        , typename Compare = std::less<typename Container::value_type> > 
class priority_queue;

These three class templates adapt the interface of a given Container type
to a special purpose. For instance, the purpose of the std::stack class
template is to adapt the interface of a container to the stack operations
top(), empty(), size(), push(), emplace(), pop(), and swap().  By
default, you’re able to use the three available sequence containers:
std::vector, std::list, and std::deque. For any other container type,
you are able to specialize the std::stack class template.

“This feels so much more familiar,” you say, visibly relieved. Again, I
absolutely agree. I also consider the Standard Library approach the more
suitable solution for the purpose of containers. But it’s still interesting to
compare the two approaches. While there are many technical differences
between the Stack base class and the std::stack class template, the
purpose and semantics of these two approaches are remarkably similar:
both provide the ability to adapt any data structure to a given stack
interface. And both serve as a variation point, allowing you to
nonintrusively add new Adapters without having to modify existing code.

Comparison Between Adapter and Strategy
“The three STL classes seem to fulfill the intent of Adapters, but isn’t this
the same way of configuring behavior as in the Strategy design pattern?
Isn’t this similar to std::unique_ptr and its deleter?” you ask. And yes,
you’re correct. From a structural point of view, the Strategy and Adapter
design patterns are very similar. However, as explained in “Guideline 11:
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Understand the Purpose of Design Patterns”, the structure of design patterns
may be similar or even the same, but the intent is different. In this context,
the Container parameter specifies not just a single aspect of the behavior,
but most of the behavior or even all of it. The class templates merely act as
a wrapper around the functionality of the given type—they mainly adapt the
interface. So the primary focus of an Adapter is to standardize interfaces
and integrate incompatible functionality into an existing set of conventions;
while on the other hand, the primary focus of the Strategy design pattern is
to enable the configuration of behavior from the outside, building on and
providing an expected interface. Also, for an Adapter there is no need to
reconfigure the behavior at any time.

Function Adapters
Additional examples for the Adapter design pattern are the Standard
Library’s free functions begin() and end(). “Are you serious?” you ask,
surprised. “You claim that free functions serve as an example of the Adapter
design pattern? Isn’t this a job for classes?” Well, not necessarily. The
purpose of the free begin() and end() functions is to adapt the iterator
interface of any type to the expected STL iterator interface. Thus, it maps
from an available set of functions to an expected set of functions and serves
the same purpose as any other Adapter. The major difference is that in
contrast to object adapters or class adapters, which are based on either
inheritance (runtime polymorphism) or templates (compile-time
polymorphism), begin() and end() draw their power from function
overloading, which is the second major compile-time polymorphism
mechanism in C++. Still, some form of abstraction is at play.

NOTE
Remember that all kinds of abstractions represent a set of requirements and thus have to
adhere to the Liskov Substitution Principle (LSP). This is also true for overload sets; see
“Guideline 8: Understand the Semantic Requirements of Overload Sets”.
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Consider the following function template:

template< typename Range > 
void traverseRange( Range const& range ) 
{ 
   for( auto&& element : range ) { 
      // ... 
   } 
}

In the traverseRange() function, we iterate through all the elements
contained in the given range with a range-based for loop. The traversal
happens via iterators that the compiler acquires with the free begin() and
end() functions. Hence, the preceding for loop is equivalent to the
following form of for:

template< typename Range > 
void traverseRange( Range const& range ) 
{ 
   { 
      using std::begin; 
      using std::end; 
 
      auto first( begin(range) ); 
      auto last ( end(range) ); 
      for( ; first!=last; ++first ) { 
         auto&& element = *first; 
         // ... 
      } 
   } 
}

Obviously, the range-based for loop is much more convenient to use.
However, underneath the surface, the compiler generates code based on the
free begin() and end() functions. Note the two using declarations in their
beginning: the purpose is to enable Argument-Dependent Lookup (ADL) for
the given type of range. ADL is the mechanism that makes sure the
“correct” begin() and end() functions are called, even if they are
overloads that reside in a user-specific namespace. This means that you
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have the opportunity to overload begin() and end() for any type and map
the expected interface to a different, special-purpose set of functions.

This kind of function adapter was called a shim by Matthew Wilson in
2004.  One valuable property of this technique is that it’s completely
nonintrusive: it is possible to add a free function to any type, even to types
that you could never adapt, such as types provided by third-party libraries.
Hence, any generic code written in terms of shims gives you the enormous
power to adapt virtually any type to the expected interface. Thus, you can
imagine that shims or function adapters are the backbone of generic
programming.

Analyzing the Shortcomings of the Adapter Design
Pattern
Despite the value of the Adapter design pattern, there is one issue with this
design pattern that I should explicitly point out. Consider the following
example, which I adopted from Eric Freeman and Elisabeth Robson:

//---- <Duck.h> ---------------- 
 
class Duck 
{ 
 public: 
   virtual ~Duck() = default; 
   virtual void quack() = 0; 
   virtual void fly() = 0; 
}; 
 
 
//---- <MallardDuck.h> ---------------- 
 
#include <Duck.h> 
 
class MallardDuck : public Duck 
{ 
 public: 
   void quack() override { /*...*/ } 
   void fly() override { /*...*/ } 
};

6
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We start with the abstract Duck class, which introduces the two pure virtual
functions quack() and fly(). Indeed, this appears to be a pretty expected
and natural interface for a Duck class and of course raises some
expectations: ducks make a very characteristic sound and can fly pretty
well. This interface is implemented by many possible kinds of Duck, such
as the MallardDuck class. Now, for some reason we also have to deal with
turkeys:

//---- <Turkey.h> ---------------- 
 
class Turkey 
{ 
 public: 
   virtual ~Turkey() = default; 
   virtual void gobble() = 0;  // Turkeys don't quack, they gobble! 
   virtual void fly() = 0;     // Turkeys can fly (a short distance) 
}; 
 
 
//---- <WildTurkey.h> ---------------- 
 
class WildTurkey : public Turkey 
{ 
 public: 
   void gobble() override { /*...*/ } 
   void fly() override { /*...*/ } 
};

Turkeys are represented by the abstract Turkey class, which of course is
implemented by many different kinds of specific Turkeys, like the
WildTurkey. To make things worse, for some reason ducks and turkeys are
expected be used together.  One possible way to make this work is to
pretend that a turkey is a duck. After all, a turkey is pretty similar to a duck.
Well, OK, it doesn’t quack, but it can gobble (the typical turkey sound), and
it can also fly (not for a long distance, but yes, it can fly). So you could
adapt turkeys to ducks with the TurkeyAdapter:

//---- <TurkeyAdapter.h> ---------------- 
 
#include <memory> 
 

8



class TurkeyAdapter : public Duck 
{ 
 public: 
   explicit TurkeyAdapter( std::unique_ptr<Turkey> turkey ) 
      : turkey_{ std::move(turkey) } 
   {} 
 
   void quack() override { turkey_->gobble(); } 
   void fly() override { turkey_->fly(); } 
 
 private: 
   std::unique_ptr<Turkey> turkey_;  // This is an example for an object 
adapter 
};

While this is an amusing interpretation of duck typing, this example nicely
demonstrates that it’s way too easy to integrate something alien into an
existing hierarchy. A Turkey is simply not a Duck, even if we want it to be.
I would argue that likely both the quack() and the fly() function violate
the LSP. Neither functions really does what I would expect it to (at least I’m
pretty sure that I want a quacking, not gobbling, critter and that I want
something that can really fly like a duck). Of course, it depends on the
specific context, but undeniably, the Adapter design pattern makes it very
easy to combine things that do not belong together. Thus, it’s very
important that you consider the expected behavior and check for LSP
violations when applying this design pattern:

#include <MallardDuck.h> 
#include <WildTurkey.h> 
#include <TurkeyAdapter.h> 
#include <memory> 
#include <vector> 
 
using DuckChoir = std::vector<std::unique_ptr<Duck>>; 
 
void give_concert( DuckChoir const& duck_choir ) 
{ 
   for( auto const& duck : duck_choir ) { 
      duck->quack(); 
   } 
} 
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int main() 
{ 
   DuckChoir duck_choir{}; 
 
   // Let's hire the world's best ducks for the choir 
   duck_choir.push_back( std::make_unique<MallardDuck>() ); 
   duck_choir.push_back( std::make_unique<MallardDuck>() ); 
   duck_choir.push_back( std::make_unique<MallardDuck>() ); 
 
   // Unfortunately we also hire a turkey in disguise 
   auto turkey = std::make_unique<WildTurkey>(); 
   auto turkey_in_disguise = std::make_unique<TurkeyAdapter>( 
std::move(turkey) ); 
   duck_choir.push_back( std::move(turkey_in_disguise) ); 
 
   // The concert is going to be a musical disaster... 
   give_concert( duck_choir ); 
 
   return EXIT_SUCCESS; 
}

In summary, the Adapter design pattern can be considered one of the most
valuable design patterns for combining different pieces of functionality and
making them work together. I promise that it will prove to be a valuable
tool in your daily work. Still, do not abuse the power of Adapter in some
heroic effort to combine apples and oranges (or even oranges and
grapefruits: they are similar but not the same). Always be aware of LSP
expectations.



GUIDELINE 24: USE ADAPTERS TO STANDARDIZE
INTERFACES

Apply the Adapter design pattern with the intent to adapt
interfaces so that otherwise incompatible pieces can work together.

Be aware that Adapter is useful for both dynamic and static
polymorphism.

Distinguish among object adapters, class adapters, and function
adapters.

Understand the differences between the Adapter and Strategy
design patterns.

Pay attention to LSP violations when using the Adapter design
pattern.

Guideline 25: Apply Observers as an
Abstract Notification Mechanism
Chances are good that you’ve heard about observers before. “Oh, yes, of
course I have—isn’t this what the so-called social media platforms are
doing with us?” you ask. Well, not exactly what I was going for, but yes, I
believe we could call these platforms observers. And yes, there is also a
pattern to what they do, even though it is not a design pattern. But I’m
actually thinking about one of the most popular GoF design patterns, the
Observer design pattern. Even if you are not familiar with the idea yet, you
very likely have some experience with helpful observers from real life. For
instance, you may have noticed that in some messenger apps the sender of a
text message is immediately informed once you’ve read a new text
message. That means that the message is displayed as “read” instead of just
“delivered.” This little service is essentially the work of a real-life



Observer: as soon as the status of the new message changes, the sender is
notified, providing the opportunity to respond to the state change.

The Observer Design Pattern Explained
In many software situations it’s desirable to get feedback as soon as some
state change occurs: a new job is added to a task queue, a setting is changed
in some configuration object, a result is ready to be picked up, etc. But at
the same time, it would be highly undesirable to introduce explicit
dependencies between the subject (the observed entity that changes) and its
observers (the callbacks that are notified based on a state change). On the
contrary, the subject should be oblivious to the potentially many different
kinds of observers. And that’s for the simple reason that any direct
dependency would make the software harder to change and harder to
extend. This decoupling between the subject and its potentially many
observers is the intent of the Observer design pattern.

THE OBSERVER DESIGN PATTERN
Intent: “Define a one-to-many dependency between objects so that when one object
changes state, all its dependents are notified and updated automatically.”

As with all design patterns, the Observer design pattern identifies one
aspect as a variation point (an aspect that changes or is expected to change)
and extracts it in the form of an abstraction. It thus helps to decouple
software entities. In the case of the Observer, the need to introduce new
observers—the need to extend a one-to-many dependency—is recognized
to be the variation point. As Figure 6-2 illustrates, this variation point is
realized in the form of the Observer base class.
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Figure 6-2. The UML representation of the Observer design pattern

The Observer class represents the abstraction for all possible
implementations of observers. These observers are attached to a specific
subject, represented by the ConcreteSubject class. To reduce the coupling
between observers and their subjects, or to simply reduce code duplication
by providing all common services to attach() and detach() to different
observers, the Subject abstraction can be used. This Subject might also



notify() all attached observers about a state change and trigger their
corresponding update() functionality.

“Isn’t the introduction of the Observer base class another example of the
SRP?” you ask. And yes, you’re 100% correct: extracting the Observer
class, extracting a variation point, is the SRP in action (see “Guideline 2:
Design for Change”). Again, the SRP acts as an enabler for the OCP (see
“Guideline 5: Design for Extension”): by introducing the Observer
abstraction, anyone is able to add new kinds of observers (e.g.,
ConcreteObserver) without the need to modify existing code. If you pay
attention to the ownership of the Observer base class and make sure that
the Observer class lives in the high level of your architecture, then you also
fulfill the Dependency Inversion Principle (DIP).

A Classic Observer Implementation
“Great, I get it! It’s nice to see these design principles in action again, but I
would like to see a concrete Observer example.” I understand. So let’s take
a look at a concrete implementation. However, I should clearly state the
limitations of the following example before we start to look at the code.
You might already be familiar with Observer, and therefore you might be
looking for help and deeper advice on many of the tricky implementation
details of Observer: how to deal with the order of attaching and detaching
observers, attaching an observer multiple times, and especially using
observers in a concurrent environment. I should honestly state up front that
it is not my intention to provide answers to these questions. That discussion
would be like opening a can of worms, quickly sucking us into the realm of
implementation details. No, although you may be disappointed, my
intention is to mostly stay on the level of software design.

Like for the previous design patterns, we start with a classic implementation
of the Observer design pattern. The central element is the Observer base
class:

 
//---- <Observer.h> ---------------- 
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class Observer 
{ 
 public: 
   virtual ~Observer() = default; 
 
   virtual void update( /*...*/ ) = 0;   
}; 

The most important implementation detail of this class is the pure virtual
update() function ( ), which is called whenever the observer is notified of
some state change.  There are three alternatives for how to define the
update() function, which provide a reasonable implementation and design
flexibility. The first alternative is to push the updated state via one or even
several update() functions:

class Observer 
{ 
 public: 
   // ... 
   virtual void update1( /*arguments representing the updated state*/ ) = 0; 
   virtual void update2( /*arguments representing the updated state*/ ) = 0; 
   // ... 
};

This form of observer is commonly called a push observer. In this form, the
observer is given all necessary information by the subject and therefore is
not required to pull any information from the subject on its own. This can
reduce the coupling to the subject significantly and create the opportunity to
reuse the Observer class for several subjects. Additionally, there is the
option to use a separate overload for each kind of state change. In the
preceding code snippet, there are two update() functions, one for each of
two possible state changes. And since it’s always clear which state changed,
the observer is not required to “search” for any state change, which proves
to be efficient.

“Excuse me,” you say, “but isn’t this a violation of the ISP? Shouldn’t we
separate concerns by separating the update() functions into several base
classes?” This is a great question! Obviously, you’re watching out for
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artificial coupling. Very good! And you are correct: we could separate an
Observer with several update() functions into smaller Observer classes:

class Observer1 
{ 
 public: 
   // ... 
   virtual void update1( /*arguments representing the updated state*/ ) = 0; 
   // ... 
}; 
 
class Observer2 
{ 
 public: 
   // ... 
   virtual void update2( /*arguments representing the updated state*/ ) = 0; 
   // ... 
};

In theory, this approach could help reduce the coupling to a particular
subject and more easily reuse observers for different subjects. It might also
help because different observers might be interested in different state
changes, and therefore it might be a violation of the ISP to artificially
couple all possible state changes. And of course this might result in an
efficiency gain if a lot of unnecessary state change notifications can be
avoided.

Unfortunately, a particular subject is not likely to distinguish among
different kinds of observers. First, because this would require it to store
different kinds of pointers (which is inconvenient to handle for the subject),
and second, because it is possible that different state changes are linked in a
certain way. In that case, the subject will expect that observers are interested
in all possible state changes. From that perspective it can be reasonable to
combine several update() functions into one base class. Either way, it’s
very likely that a concrete observer will have to deal with all kinds of state
changes. I know, it can be a nuisance to have to deal with several update()
functions, even if only a small fraction of them are interesting. But still,
make sure that you’re not accidentally violating the Liskov Substitution
Principle by not adhering to some expected behavior (if there is any).



There are several more potential downsides of a push observer. First, the
observers are always given all the information, whether they need it or not.
Thus, this push style works well only if the observers need the information
most of the time. Otherwise, a lot of effort is lost on unnecessary
notifications. Second, pushing creates a dependency on the number and
kind of arguments that are passed to the observer. Any change to these
arguments requires a lot of subsequent changes in the deriving observer
classes.

Some of these downsides are resolved by the second Observer alternative.
It’s possible to only pass a reference to the subject to the observer:

class Observer 
{ 
 public: 
   // ... 
   virtual void update( Subject const& subject ) = 0; 
   // ... 
};

Due to the lack of specific information passed to the observer, the classes
deriving from the Observer base class are required to pull the new
information from the subject on their own. For this reason, this form of
observer is commonly called a pull observer. The advantage is the reduced
dependency on the number and kinds of arguments. Deriving observers are
free to query for any information, not just the changed state. On the other
hand, this design creates a strong, direct dependency between the classes
deriving from Observer and the subject. Hence, any change to the subject
easily reflects on the observers. Additionally, observers might have to
“search” for the state change if multiple details have changed. This might
prove to be unnecessarily inefficient.

If you consider only a single piece of information as the changing state, the
performance disadvantage might not pose a limitation for you. Still, please
remember that software changes: a subject may grow, and with it the desire
to notify about different kinds of changes. Adapting the observers in the
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process would result in a lot of additional work. From that point of view,
the push observer appears to be a better choice.

Luckily, there is a third alternative, which removes a lot of the previous
disadvantages and thus becomes our approach of choice: in addition to
passing a reference to the subject, we pass a tag to provide information
about which property of a subject has changed:

//---- <Observer.h> ---------------- 
 
class Observer 
{ 
 public: 
   virtual ~Observer() = default; 
 
   virtual void update( Subject const& subject 
                      , /*Subject-specific type*/ property ) = 0; 
};

The tag may help an observer to decide on its own whether some state
change is interesting or not. It’s commonly represented by some subject-
specific enumeration type, which lists all possible state changes. This,
unfortunately, increases the coupling of the Observer class to a specific
subject.

“Wouldn’t it be possible to remove the dependency on a specific Subject
by implementing the Observer base class as a class template? Take a look
at the following code snippet:”

 
//---- <Observer.h> ---------------- 
 
template< typename Subject, typename StateTag >   
class Observer 
{ 
 public: 
   virtual ~Observer() = default; 
 
   virtual void update( Subject const& subject, StateTag property ) = 0; 
}; 



This is a great suggestion. By defining the Observer class in the form of a
class template ( ), we can easily lift the Observer to a higher architectural
level. In this form, the class does not depend on any specific subject and
thus may be reused by many different subjects that want to define a one-to-
many relationship. However, you should not expect too much of this
improvement: the effect is limited to the Observer class. Concrete subjects
will expect concrete instantiations of this observer class, and in
consequence, concrete implementations of Observer will still strongly
depend on the subject.

To better understand why that is, let’s take a look at a possible subject
implementation. After your initial comment about social media, I suggest
that we implement an Observer for persons. Well, OK, this example may be
morally questionable, but it will serve its purpose, so let’s go with that. At
least we know who is to blame for this.

The following Person class represents an observed person:

 
//---- <Person.h> ---------------- 
 
#include <Observer.h> 
#include <string> 
#include <set> 
 
class Person 
{ 
 public: 
   enum StateChange 
   { 
      forenameChanged, 
      surnameChanged, 
      addressChanged 
   }; 
 
   using PersonObserver = Observer<Person,StateChange>;   
 
   explicit Person( std::string forename, std::string surname ) 
      : forename_{ std::move(forename) } 
      , surname_{ std::move(surname) } 
   {} 
 



   bool attach( PersonObserver* observer );   
   bool detach( PersonObserver* observer );   
 
   void notify( StateChange property );   
 
   void forename( std::string newForename );   
   void surname ( std::string newSurname ); 
   void address ( std::string newAddress ); 
 
   std::string const& forename() const { return forename_; } 
   std::string const& surname () const { return surname_; } 
   std::string const& address () const { return address_; } 
 
 private: 
   std::string forename_;   
   std::string surname_; 
   std::string address_; 
 
   std::set<PersonObserver*> observers_;   
}; 

In this example, a Person is merely an aggregation of the three data
members: forename_, surname_, and address_ ( ) (I know, this is a rather
simple representation of a person.) In addition, a person holds the std::set
of registered observers ( ). Please note that the observers are registered by
pointers to instances of PersonObserver ( ). This is interesting for two
reasons: first, this demonstrates the purpose of the templated Observer
class: the Person class instantiates its own kind of observer from the class
template. And second, pointers prove to be very useful in this context, since
the address of an object is unique. Thus, it is common to use the address as
a unique identifier for an observer.

“Shouldn’t this be std::unique_ptr or std::shared_ptr?” you ask. No,
not in this situation. The pointers merely serve as handles to the registered
observers; they should not own the observers. Therefore, any owning smart
pointer would be the wrong tool in this situation. The only reasonable
choice would be std::weak_ptr, which would allow you to check for
dangling pointers. However, std::weak_ptr is not a good candidate for a
key for std::set (not even with a custom comparator). Although there are
ways to still use std::weak_ptr, I will stick to raw pointers. But don’t



worry, this doesn’t mean we are abandoning the benefits of modern C++.
No, using a raw pointer is perfectly valid in this situation. This is also
expressed in C++ Core Guideline F.7:

For the general use, take T* or T& arguments rather than smart pointers.

Whenever you’re interested in getting a notification for a state change of a
person, you can register an observer via the attach() member function ( ).
And whenever you’re no longer interested in getting notifications, you can
deregister an observer via the detach() member function ( ). These two
functions are an essential ingredient of the Observer design pattern and a
clear indication of the application of the design pattern:

bool Person::attach( PersonObserver* observer ) 
{ 
   auto [pos,success] = observers_.insert( observer ); 
   return success; 
} 
 
bool Person::detach( PersonObserver* observer ) 
{ 
   return ( observers_.erase( observer ) > 0U ); 
}

You have complete freedom to implement the attach() and detach()
functions as you see fit. In this example, we allow an observer to be
registered only a single time with a std::set. If you try to register an
observer a second time, the function returns false. The same thing happens
if you try to deregister an observer that is not registered. Note that the
decision to not allow multiple registrations is my choice for this example. In
other scenarios, it might be desirable or even necessary to accept duplicate
registrations. Either way, the behavior and interface of the subject should of
course be consistent in all cases.

Another core function of the Observer design pattern is the notify()
member function ( ). Whenever some state change occurs, this function is
called to notify all registered observers about the change:
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void Person::notify( StateChange property ) 
{ 
   for( auto iter=begin(observers_); iter!=end(observers_); ) 
   { 
      auto const pos = iter++; 
      (*pos)->update(*this,property); 
   } 
}

“Why is the implementation of the notify() function so complicated?
Wouldn’t a range-based for loop be completely sufficient?” You are
correct; I should explain what’s happening here. The given formulation
makes sure detach() operations can be detected during the iteration. This
may happen, for instance, if an observer decides to detach itself during the
call to the update() function. But I do not claim that this formulation is
perfect: unfortunately it is not able to cope with attach() operations. And
don’t even start to ask about concurrency! So this is just one example why
the implementation details of observer can be so tricky.

The notify() function is called in all three setter functions ( ). Note that
in all three functions, we always pass a different tag to indicate which
property has changed. This tag may be used by classes deriving from the
Observer base class to determine the nature of the change:

void Person::forename( std::string newForename ) 
{ 
   forename_ = std::move(newForename); 
   notify( forenameChanged ); 
} 
 
void Person::surname( std::string newSurname ) 
{ 
   surname_ = std::move(newSurname); 
   notify( surnameChanged ); 
} 
 
void Person::address( std::string newAddress ) 
{ 
   address_ = std::move(newAddress); 
   notify( addressChanged ); 
}



With these mechanics in place, you are now able to write new kinds of fully
OCP-conforming observers. For instance, you could decide to implement a
NameObserver and an AddressObserver:

//---- <NameObserver.h> ---------------- 
 
#include <Observer.h> 
#include <Person.h> 
 
class NameObserver : public Observer<Person,Person::StateChange> 
{ 
 public: 
   void update( Person const& person, Person::StateChange property ) override; 
}; 
 
 
//---- <NameObserver.cpp> ---------------- 
 
#include <NameObserver.h> 
 
void NameObserver::update( Person const& person, Person::StateChange property 
) 
{ 
   if( property == Person::forenameChanged || 
       property == Person::surnameChanged ) 
   { 
      // ... Respond to changed name 
   } 
} 
 
 
//---- <AddressObserver.h> ---------------- 
 
#include <Observer.h> 
#include <Person.h> 
 
class AddressObserver : public Observer<Person,Person::StateChange> 
{ 
 public: 
   void update( Person const& person, Person::StateChange property ) override; 
}; 
 
//---- <AddressObserver.cpp> ---------------- 
 
#include <AddressObserver.h> 
 



void AddressObserver::update( Person const& person, Person::StateChange 
property ) 
{ 
   if( property == Person::addressChanged ) { 
      // ... Respond to changed address 
   } 
}

Equipped with these two observers, you are now notified whenever either
the name or address of a person changes:

#include <AddressObserver.h> 
#include <NameObserver.h> 
#include <Person.h> 
#include <cstdlib> 
 
int main() 
{ 
   NameObserver nameObserver; 
   AddressObserver addressObserver; 
 
   Person homer( "Homer"     , "Simpson" ); 
   Person marge( "Marge"     , "Simpson" ); 
   Person monty( "Montgomery", "Burns"   ); 
 
   // Attaching observers 
   homer.attach( &nameObserver ); 
   marge.attach( &addressObserver ); 
   monty.attach( &addressObserver ); 
 
   // Updating information on Homer Simpson 
   homer.forename( "Homer Jay" );  // Adding his middle name 
 
   // Updating information on Marge Simpson 
   marge.address( "712 Red Bark Lane, Henderson, Clark County, Nevada 89011" 
); 
 
   // Updating information on Montgomery Burns 
   monty.address( "Springfield Nuclear Power Plant" ); 
 
   // Detaching observers 
   homer.detach( &nameObserver ); 
 
   return EXIT_SUCCESS; 
}



After these many implementation details, let’s take a step back and look at
the bigger picture again. Figure 6-3 shows the dependency graph for this
Observer example.





Figure 6-3. Dependency graph for the Observer design pattern

Due to the decision to implement the Observer class in the form of a class
template, the Observer class resides on the highest level of our
architecture. This enables you to reuse the Observer class for multiple
purposes, for instance, for the Person class. The Person class declares its
own Observer<Person,Person::StateChange> type and by that injects
the code into its own architectural level. Concrete person observers, e.g.,
NameObserver and AddressObserver, can subsequently build on this
declaration.

An Observer Implementation Based on Value Semantics
“I understand why you’ve started with a classic implementation, but since
you have made the point about favoring value semantics, how would the
observer look in a value semantics world?” That is an excellent question,
since this a very reasonable next step. As explained in “Guideline 22: Prefer
Value Semantics over Reference Semantics”, there are a lot of good reasons
to avoid the realm of reference semantics. However, we won’t entirely stray
from the classic implementation: to register and deregister observers, we
will always be in need of some unique identifier for observers, and the
unique address of an observer is just the easiest and most convenient way to
tackle that problem. Therefore, we’ll stick to using a pointer to refer to a
registered observer. However, std::function is an elegant way to avoid
the inheritance hierarchy—std::function:

 
//---- <Observer.h> ---------------- 
 
#include <functional> 
 
template< typename Subject, typename StateTag > 
class Observer 
{ 
 public: 
   using OnUpdate = std::function<void(Subject const&,StateTag)>;   
 
   // No virtual destructor necessary 



 
   explicit Observer( OnUpdate onUpdate )   
      : onUpdate_{ std::move(onUpdate) } 
   { 
      // Possibly respond on an invalid/empty std::function instance 
   } 
 
   // Non-virtual update function 
   void update( Subject const& subject, StateTag property ) 
   { 
      onUpdate_( subject, property );   
   } 
 
 private: 
   OnUpdate onUpdate_;   
}; 

Instead of implementing the Observer class as a base class, and thus
requiring deriving classes to inherit and implement the update() function
in a very specific way, we separate concerns and instead build on
composition (see “Guideline 20: Favor Composition over Inheritance”).
The Observer class first provides a type alias called OnUpdate for the
std::function type for the expected signature of our update() function (

). Via the constructor, you are passed an instance of std::function ( ),
and you move it into your data member onUpdate_ ( ). The job of the
update() function is now to forward the call, including the arguments, to
onUpdate_ ( ).

The flexibility gained with std::function is easily demonstrated with an
updated main() function:

#include <Observer.h> 
#include <Person.h> 
#include <cstdlib> 
 
void propertyChanged( Person const& person, Person::StateChange property ) 
{ 
   if( property == Person::forenameChanged || 
       property == Person::surnameChanged ) 
   { 
      // ... Respond to changed name 
   } 
} 



 
int main() 
{ 
   using PersonObserver = Observer<Person,Person::StateChange>; 
 
   PersonObserver nameObserver( propertyChanged ); 
 
   PersonObserver addressObserver( 
      [/*captured state*/]( Person const& person, Person::StateChange property 
){ 
         if( property == Person::addressChanged ) 
         { 
            // ... Respond to changed address 
         } 
      } ); 
 
   Person homer( "Homer"     , "Simpson" ); 
   Person marge( "Marge"     , "Simpson" ); 
   Person monty( "Montgomery", "Burns"   ); 
 
   // Attaching observers 
   homer.attach( &nameObserver ); 
   marge.attach( &addressObserver ); 
   monty.attach( &addressObserver ); 
 
   // ... 
 
   return EXIT_SUCCESS; 
}

Thanks to choosing a less intrusive approach and to decoupling with
std::function, the choice of how to implement the update() function is
completely up to the observer’s implementer (stateless, stateful, etc.). For
the nameObserver, we build on the free function propertyChanged(),
which itself is strongly decoupled because it’s not bound to a class and
might be reused on several occasions. The addressObserver, on the other
hand, chooses a lambda instead, which could possibly capture some state.
Either way, the only convention that these two have to follow is to fulfill the
required signature of the required std::function type.

“Why do we still need the Observer class? Couldn’t we just directly use
std::function?” Yes, it most certainly looks that way. From a
functionality point of view, the Observer class doesn’t add anything by



itself. However, as std::function is a true child of value semantics, we
tend to copy or move std::function objects. But this is not desirable in
this situation: especially if you use a stateful observer, you don’t want a
copy of your observer to be called. And although technically possible, it is
not particularly common to pass around pointers to std::function.
Therefore, the Observer class may still be of value in the form of an
Adapter for std::function (see “Guideline 24: Use Adapters to
Standardize Interfaces”).

Analyzing the Shortcomings of the Observer Design
Pattern
“This is not quite the value semantics solution I was expecting, but I still
like it!” Well, I’m glad you feel this way. Indeed, the value semantics
advantages, in combination with the benefits of the Observer design pattern
(i.e., decoupling an event from the action taken for that event and the ability
to easily add new kinds of observers), work really, really well.
Unfortunately, there is no perfect design, and every design also comes with
disadvantages.

First, I should explicitly spell out that the demonstrated std::function
approach works well only for a pull observer with a single update()
function. Since std::function can cope with only a single callable, any
approach that would require multiple update() functions cannot be
handled by a single std::function. Therefore, std::function is usually
not the way to go for a push observer with multiple update() functions, or
the potential for a growing number of update() functions (remember, code
tends to change!). However, it is possible to generalize the approach of
std::function. If the need arises, the design pattern of choice is Type
Erasure (see Chapter 8).

A second (minor) disadvantage, as you have seen, is that there is no pure
value-based implementation. While we might be able to implement the
update() functionality in terms of std::function to gain flexibility, we
still use a raw pointer to attach and detach Observers. And that is easy to
explain: the advantages of using a pointer as a unique identifier are just too



good to dismiss. Additionally, for a stateful Observer, we don’t want to deal
with the copy of an entity. Still, this of course requires us to check for
nullptr (which takes additional effort), and we always have to pay for the
indirection that the pointer represents.  I personally would rate this as only
a minor point because of the many advantages of this approach.

A far bigger disadvantage is the potential implementation issues with
Observers: the order of registration and deregistration may matter a lot, in
particular if an observer is allowed to register multiple times. Also, in a
multithreaded environment, the thread-safe registration and deregistration
of observers and handling of events are highly nontrivial topics. For
instance, an untrusted observer can freeze a server during a callback if it
behaves inappropriately, and implementing timeouts for arbitrary
computations is very nontrivial. However, this topic is far outside the scope
of this book.

What is in the scope of this book, however, is the alleged danger that the
overuse of observers can quickly and easily lead to a complex network of
interconnections. Indeed, if you are not careful, you can accidentally
introduce an infinite loop of callbacks! For that reason, developers are
sometimes concerned about using Observers and are afraid that a single
notification may result in a huge, global response due to these
interconnections. While this danger exists, of course, a proper design should
not be severely affected by this: if you have a proper architecture and if you
have properly implemented your observers, then any sequence of
notifications should always run along a directed, acyclic graph (DAG)
toward the lower levels of your architecture. And that, of course, is the
beauty of good software design.

In summary, with the intent of providing a solution for notification of state
change, the Observer design pattern proves to be one of the most famous
and most commonly used design patterns. Aside from the potentially tricky
implementation details, it is definitely one of the design patterns that should
be in every developer’s toolbox.
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GUIDELINE 25: APPLY OBSERVERS AS AN ABSTRACT
NOTIFICATION MECHANISM

Apply the Observer design pattern with the intent to create a one-
to-many relationship between a subject and its observers.

Understand the trade-offs between push observers and pull
observers.

Utilize the advantages of a value semantics–based Observer
implementation.

Guideline 26: Use CRTP to Introduce Static
Type Categories
C++ really has a lot to offer. It comes with lots of features, many syntactic
curiosities, and a large number of amazing, utterly unpronounceable and
(for the uninitiated) plainly cryptic acronyms: RAII, ADL, CTAD,
SFINAE, NTTP, IFNDR, and SIOF. Oh, what fun! One of these cryptic
acronyms is CRTP, short for the Curiously Recurring Template Pattern.  If
you’re’ scratching your head because the name doesn’t make any sense to
you, don’t worry: as is so often in C++, the name was chosen randomly, but
has stuck and has never been reconsidered or changed. The pattern was
named by James Coplien in the February 1995 issue of the C++ Report
after realizing that, curiously, this pattern was recurring in many different
C++ codebases.  And curiously, this pattern, although building on
inheritance and (potentially) serving as an abstraction, does not exhibit the
usual performance drawbacks of many other classic design patterns. For
that reason, CRTP is definitely worth a look, as it may become a valuable,
or should I say curious, addition to your design pattern toolbox.

A Motivation for CRTP
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Performance is very important in C++. So important in fact, that in several
contexts the performance overhead of using virtual functions is considered
outright unacceptable. Therefore, in performance-sensitive contexts, such as
certain parts of computer games or high-frequency trading, no virtual
functions are used. The same is true for high-performance computing
(HPC). In HPC, any kind of conditional or indirection, and this includes
virtual functions, is banned from the most performance-critical parts, such
as the innermost loops of compute kernels. Using them would incur too
much of a performance overhead.

To give an example of how and why this matters, let’s consider the
following DynamicVector class template from a linear algebra (LA)
library:

 
//---- <DynamicVector.h> ---------------- 
 
#include <numeric> 
#include <iosfwd> 
#include <iterator> 
#include <vector> 
// ... 
 
template< typename T > 
class DynamicVector 
{ 
 public: 
   using value_type     = T;   
   using iterator       = typename std::vector<T>::iterator; 
   using const_iterator = typename std::vector<T>::const_iterator; 
 
   // ... Constructors and special member functions 
 
   size_t size() const;   
 
   T&       operator[]( size_t index );   
   T const& operator[]( size_t index ) const; 
 
   iterator       begin();   
   const_iterator begin() const; 
   iterator       end(); 
   const_iterator end() const; 
 



   // ... Many numeric functions 
 
 private: 
   std::vector<T> values_;   
   // ... 
}; 
 
template< typename T > 
std::ostream& operator<<( std::ostream& os, DynamicVector const<T>& vector )  
 

{ 
   os << "("; 
   for( auto const& element : vector ) { 
      os << " " << element; 
   } 
   os << " )"; 
 
   return os; 
} 
 
template< typename T > 
auto l2norm( DynamicVector const<T>& vector )   
{ 
   using std::begin, std::end; 
   return std::sqrt( std::inner_product( begin(vector), end(vector) 
                                       , begin(vector), T{} ) ); 
} 
 
// ... Many more 

Despite the name, DynamicVector does not represent a container but a
numerical vector for the purpose of LA computations. The Dynamic part of
the name implies that it allocates its elements of type T dynamically, in this
example, in the form of std::vector ( ). For that reason, it is suited for
large LA problems (definitely in the range of several million elements).
Although this class may be loaded with many numerical operations, from
an interface point of view you might indeed be tempted to call it a
container: it provides the usual nested types (value_type, iterator, and
const_iterator) ( ), a size() function to query the current number of
elements ( ), subscript operators to access individual elements by index
(one for non-const and one for const vectors) ( ), and begin() and end()
functions to iterate over the elements ( ). Apart from the member functions,



it also provides an output operator ( ) and, to show at least one LA
operation, a function to compute the vector’s Euclidean norm (often also
called the L2 norm, because it approximates the L2 norm for discrete
vectors) ( ).

The DynamicVector is not the only vector class, though. In our LA library,
you will also find the following StaticVector class:

 
//---- <StaticVector.h> ---------------- 
 
#include <array> 
#include <numeric> 
#include <iosfwd> 
#include <iterator> 
// ... 
 
template< typename T, size_t Size > 
class StaticVector 
{ 
 public: 
   using value_type     = T;   
   using iterator       = typename std::array<T,Size>::iterator; 
   using const_iterator = typename std::array<T,Size>::const_iterator; 
 
   // ... Constructors and special member functions 
 
   size_t size() const;   
 
   T&       operator[]( size_t index );   
   T const& operator[]( size_t index ) const; 
 
   iterator       begin();   
   const_iterator begin() const; 
   iterator       end(); 
   const_iterator end() const; 
 
   // ... Many numeric functions 
 
 private: 
   std::array<T,Size> values_;   
   // ... 
}; 
 
template< typename T, size_t Size > 
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std::ostream& operator<<( std::ostream& os,     
                          StaticVector<T,Size> const& vector ) 
{ 
   os << "("; 
   for( auto const& element : vector ) { 
      os << " " << element; 
   } 
   os << " )"; 
 
   return os; 
} 
 
template< typename T, size_t Size > 
auto l2norm( StaticVector<T,Size> const& vector )   
{ 
   using std::begin, std::end; 
   return std::sqrt( std::inner_product( begin(vector), end(vector) 
                                       , begin(vector), T{} ) ); 
} 

“Isn’t this almost the same as the DynamicVector class?” you wonder. Yes,
these two classes are very similar indeed. The StaticVector class provides
the same interface as the DynamicVector, such as the nested types
value_type, iterator, and const_iterator ( ); the size() member
function ( ); the subscript operators ( ); and the begin() and end()
functions ( ). It also comes with an output operator ( ) and a free
l2norm() function ( ). However, there is an important, performance-
related difference between the two vector classes: as the Static in the
name suggests, the StaticVector does not allocate its elements
dynamically. Instead, it uses an in-class buffer to store its elements, for
instance, with a std::array ( ). Thus, in contrast to DynamicVector, the
entire functionality of StaticVector is optimized for a small, fixed number
of elements, such as 2D or 3D vectors.

“OK, I understand that this is important for performance, but there’s still a
lot of code duplication, right?” Again, you are correct. If you take a close
look at the associated output operator of the two vector classes, you will
find that the implementation of these two functions is identical. This is
deeply undesirable: if anything changes, for instance, the way vectors are
formatted (and remember: change is the one constant in software



development and needs to be expected; see “Guideline 2: Design for
Change”), then you would have to make the change in many places, not just
one. This is a violation of the Don’t Repeat Yourself (DRY) principle: it’s
easy to forget or miss updating one of the many places, thus introducing an
inconsistency or even a bug.

“But isn’t this duplication easily resolved with a slightly more general
function template? For example, I can imagine the following output
operator for all kinds of dense vectors:”

template< typename DenseVector > 
std::ostream& operator<<( std::ostream& os, DenseVector const& vector ) 
{ 
   // ... as before 
}

Although this seems like an adequate solution, I wouldn’t accept this code
in a pull request. This function template is indeed more general, but I would
definitely not call it “slightly” more general; what you are suggesting is the
most general output operator one could possibly write. Yes, the name of the
function template may suggest that it’s written for only dense vectors
(including DynamicVector and StaticVector), but this function template
will in fact accept any type: DynamicVector, StaticVector,
std::vector, std::string, and fundamental types such as int and
double. It simply fails to specify any requirement or any kind of constraint.
For that reason it violates Core Guideline T.10:

Specify concepts for all template arguments.

While this output operator will work for all dense vectors and sequence
containers, you would get a compilation error for all types that do not
provide the expected interface. Or even worse, you might subtly violate the
implicit requirements and expectations, and with that the LSP (see
“Guideline 6: Adhere to the Expected Behavior of Abstractions”). Of
course, you wouldn’t do this consciously, but likely accidentally: this output
operator is a perfect match for any type and might be used even though you
don’t expect it. Therefore, this function template would be a very
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unfortunate addition to the output operator overload set. What we need is a
totally new set of types, a new type category.

“Isn’t this what base classes are for? Couldn’t we just formulate a
DenseVector base class that defines the expected interface for all dense
vectors? Consider the following sketch of a DenseVector base class:”

template< typename T >  // Type of the elements 
class DenseVector 
{ 
 public: 
   virtual ~DenseVector() = default; 
 
   virtual size_t size() const = 0; 
 
   virtual T&       operator[]( size_t index ) = 0; 
   virtual T const& operator[]( size_t index ) const = 0; 
 
   // ... 
}; 
 
template< typename T > 
std::ostream& operator<<( std::ostream& os, DenseVector<T> const& vector ) 
{ 
   // ... as before 
}

“This should work, right? I’m just not sure how to declare the begin() and
end() functions, as I don’t know how to abstract from different iterator
types, such as std::vector<T>::iterator and
std::array<T>::iterator.” I also have a feeling that this could be a
problem, and I admit that I also do not have a quick solution for that. But
there is something far more concerning: with this base class, we would turn
all our member functions into virtual member functions. That would include
the begin() and end() functions but, most importantly, the two subscript
operators. The consequences would be significant: with every access to an
element of the vector, we would now have to call a virtual function. Every
single access! Therefore, with this base class, we could wave goodbye to
high performance.



Still, the general idea of building an abstraction with a base class is good.
We just have to do it differently. This is where we should take a closer look
at the CRTP.

The CRTP Design Pattern Explained
The CRTP design pattern builds on the common idea of creating an
abstraction using a base class. But instead of establishing a runtime
relationship between base and derived classes via virtual functions, it
creates a compile-time relationship.

THE CRTP DESIGN PATTERN
Intent: “Define a compile-time abstraction for a family of related types.”

The compile-time relationship between the DenseVector base class and the
DynamicVector derived class is created by upgrading the base class to a
class template:

 
//---- <DenseVector.h> ---------------- 
 
template< typename Derived >   
struct DenseVector 
{ 
   // ... 
   size_t size() const { return static_cast<Derived const&>(*this).size(); }  
 

   // ... 
}; 
 
 
//---- <DynamicVector.h> ---------------- 
 
template< typename T > 
class DynamicVector : public DenseVector<DynamicVector<T>>   
{ 
 public: 
   // ... 



   size_t size() const;   
   // ... 
}; 

The curious detail about CRTP is that the new template parameter of the
DenseVector base class represents the type of the associated derived class (

). Derived classes, for instance, the DynamicVector, are expected to
provide their own type to instantiate the base class ( ).

“Wow, wait a second—is that even possible?” you ask. It is. To instantiate a
template, you do not need the complete definition of a type. It is sufficient
to use an incomplete type. Such an incomplete type is available after the
compiler has seen the class DynamicVector declaration. In essence, this
piece of syntax works as a forward declaration. Therefore, the
DynamicVector class can indeed use itself as a template argument to the
DenseVector base class.

Of course, you can name the template parameter of the base class however
you’d like (e.g., simply T), but as discussed in “Guideline 14: Use a Design
Pattern’s Name to Communicate Intent”, it helps to communicate intent by
using the name of the design pattern or names commonly used for a pattern.
For that reason, you could name the parameter CRTP, which nicely
communicates the pattern but unfortunately only to the initiated. Everyone
else will be puzzled by the acronym. Therefore, the template parameter is
often called Derived, which perfectly expresses its purpose and
communicates its intent: it represents the type of the derived class.

Via this template parameter, the base class is now aware of the actual type
of the derived type. While it still represents an abstraction and the common
interface for all dense vectors, it is now able to access and call the concrete
implementation in the derived type. This happens, for instance, in the
size() member function ( ): the DenseVector uses a static_cast to
convert itself into a reference to the derived class and calls the size()
function on that. What at first glance may look like a recursive function call
(calling the size() function within the size() function) is in fact a call of
the size() member function in the derived class ( ).



“So this is the compile-time relationship you were taking about. The base
class represents an abstraction from concrete derived types and
implementation details but still knows exactly where the implementation
details are. So we really do not need any virtual function.” Correct. With
CRTP, we are now able to implement a common interface and forward
every call to the derived class by simply performing a static_cast. And
there is no performance penalty for doing this. In fact, the base class
function is very likely to be inlined, and if the DenseVector is the only or
first base class, the static_cast will not even result in a single assembly
instruction. It merely tells the compiler to treat the object as an object of the
derived type.

To provide a clean CRTP base class, we should update a couple of details,
though:

 
//---- <DenseVector.h> ---------------- 
 
template< typename Derived > 
struct DenseVector 
{ 
 protected: 
   ~DenseVector() = default;   
 
 public: 
   Derived&       derived()       { return static_cast<Derived&>( *this ); }  
 

   Derived const& derived() const { return static_cast<Derived const&>( *this 
); } 
 
   size_t size() const { return derived().size(); } 
 
   // ... 
}; 

Since we want to avoid any virtual functions, we’re also not interested in a
virtual destructor. Therefore, we implement the destructor as a nonvirtual
function in the protected section of the class ( ). This perfectly adheres to
Core Guideline C.35:
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A base class destructor should be either public and virtual, or protected
and non-virtual.

Keep in mind, though, that this definition of the destructor keeps the
compiler from generating the two move operations. Since a CRTP base
class is usually empty with nothing to move, this is not a problem; but still,
always be mindful about the Rule of 5.

We should also avoid using a static_cast in every single member
function of the base class. Although it would be correct, any cast should be
considered suspicious, and casts should be minimized.  For that reason, we
add the two derived() member functions, which perform the cast and can
be used in the other member functions ( ). This resulting code not only
looks cleaner and adheres to the DRY principle, but it also looks far less
suspicious.

Equipped with the derived() functions, we can now go ahead and define
the subscript operators and the begin() and end() functions:

template< typename Derived > 
struct DenseVector 
{ 
   // ... 
 
   ??? operator[]( size_t index )       { return derived()[index]; } 
   ??? operator[]( size_t index ) const { return derived()[index]; } 
 
   ??? begin()       { return derived().begin(); } 
   ??? begin() const { return derived().begin(); } 
   ??? end()         { return derived().end(); } 
   ??? end()   const { return derived().end(); } 
 
   // ... 
};

However, these functions are not as straightforward as the size() member
function. In particular, the return types prove to be a little harder to specify,
as these types depend on the implementation of the Derived class. “Well,
that shouldn’t be too hard,” you say. “This is why the derived types provide
a couple of nested types, such as value_type, iterator, and
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const_iterator, right?” Indeed, it appears to be intuitive to just ask
nicely:

 
template< typename Derived > 
struct DenseVector 
{ 
   // ... 
 
   using value_type     = typename Derived::value_type;   
   using iterator       = typename Derived::iterator; 
   using const_iterator = typename Derived::const_iterator; 
 
   value_type&       operator[]( size_t index )       { return derived()
[index]; } 
   value_type const& operator[]( size_t index ) const { return derived()
[index]; } 
 
   iterator       begin()       { return derived().begin(); } 
   const_iterator begin() const { return derived().begin(); } 
   iterator       end()         { return derived().end(); } 
   const_iterator end()   const { return derived().end(); } 
 
   // ... 
}; 

We query for the value_type, iterator, and const_iterator types in the
derived class (don’t forget the typename keyword) and use these to specify
our return types ( ). Easy, right? You can almost bet that it’s not that easy.
If you try this, the Clang compiler will complain with a seriously weird and
baffling error message:

CRTP.cpp:29:41: error: no type named 'value_type' in 'DynamicVector<int>' 
using value_type = typename Derived::value_type; 
                      ~~~~~~~~~~~~~~~~~~^~~~~~~~~~

“No value_type in DynamicVector<int>—strange.” The first idea that
crosses your mind is that you messed up. It must be a typo. Of course! So
you go back to your code and check the spelling. However, it turns out that
everything seems to be OK. There is no typo. You check the
DynamicVector class again: there it is, the nested value_type member.



And everything is public, too. The error message just doesn’t make any
sense. You reexamine everything, and again, and half an hour later you
conclude, “The compiler has a bug!”

No, it isn’t a bug in the compiler. Not in Clang or any other compiler. GCC
provides a different, still slightly puzzling, but a perhaps little more
illuminating error message:

CRTP.cpp:29:10: error: invalid use of incomplete type 'class 
DynamicVector<int>' 
   29 |    using value_type = typename Derived::value_type; 
      |          ^~~~~~~~~~

The Clang compiler is correct: there is no value_type in the
DynamicVector class. Not yet! When you query for the nested types, the
definition of the DynamicVector class hasn’t been seen, and
DynamicVector is still an incomplete type. That’s because the compiler will
instantiate the DenseVector base class before the definition of the
DynamicVector class. After all, syntactically, the base class is specified
before the body of the class:

template< typename T > 
class DynamicVector : public DenseVector<DynamicVector<T>> 
// ...

In consequence, there is no way that you can use the nested types of the
derived class for the return types of the CRTP class. In fact, you can’t use
anything as long as the derived class is an incomplete type. “But why can I
call the member functions of the derived class? Shouldn’t this result in the
same problem?” Luckily, this works (otherwise the CRTP pattern would not
work at all). But it only works because of a special property of class
templates: member functions are only instantiated on demand, meaning
when they are actually called. Since an actual call usually happens only
after the definition of the derived class is available, there is no problem with
a missing definition. At that point, the derived class is not an incomplete
type anymore.
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“OK, I get it. But how do we specify the return types of the subscript
operators and begin() and end() functions?” The most convenient way to
handle this is to use return type deduction. This is a perfect opportunity to
use the decltype(auto) return type:

template< typename Derived > 
struct DenseVector 
{ 
   // ... 
 
   decltype(auto) operator[]( size_t index )       { return derived()[index]; 
} 
   decltype(auto) operator[]( size_t index ) const { return derived()[index]; 
} 
 
   decltype(auto) begin()       { return derived().begin(); } 
   decltype(auto) begin() const { return derived().begin(); } 
   decltype(auto) end()         { return derived().end(); } 
   decltype(auto) end()   const { return derived().end(); } 
};

“Wouldn’t it be enough to just use auto? For instance, we could define the
return types like this:”

template< typename Derived > 
struct DenseVector 
{ 
   // ... Note: this doesn't always work, whereas decltype(auto) always works 
 
   auto&       operator[]( size_t index )       { return derived()[index]; } 
   auto const& operator[]( size_t index ) const { return derived()[index]; } 
 
   auto begin()       { return derived().begin(); } 
   auto begin() const { return derived().begin(); } 
   auto end()         { return derived().end(); } 
   auto end()   const { return derived().end(); } 
};

It would be enough for this example, yes. However, as I keep emphasizing,
code changes. Eventually, there may be another, deriving vector class that
does not store its values and returns references to its values but produces
values and returns by value. And yes, this is easily conceivable: consider,



for instance, a ZeroVector class, which represents the zero element for
vectors. Such a vector would not store all of its elements, as this would be
wasteful, but would likely be implemented as an empty class, which returns
a zero by value every time an element is accessed. In that case, an auto&
return type would be incorrect. Yes, the compiler would (hopefully) warn
you about that. But you could avoid the entire problem by just returning
exactly what the deriving class returns. And that kind of return type is
represented by the decltype(auto) return.

Analyzing the Shortcomings of the CRTP Design Pattern
“Wow, this CRTP design pattern sounds amazing. So seriously, apart from
these slightly-more-complex-than-usual implementation details, isn’t this
the solution to all performance issues with virtual functions? And isn’t this
the key, the holy grail for all inheritance-related problems?” I can
understand the enthusiasm! At first sight, CRTP most definitely looks like
the ultimate solution for all kinds of inheritance hierarchies. Unfortunately,
that is an illusion. Remember: every design pattern comes with benefits but
unfortunately also with drawbacks. And there are several pretty limiting
drawbacks to the CRTP design pattern.

The first, and one of the most restricting, drawbacks is the lack of a
common base class. I will repeat this to emphasize the gravity of the
repercussions: there is no common base class! Effectively, every single
derived class has a different base class. For example, the
DynamicVector<T> class has the DenseVector<Dynamic Vector<T>> base
class. The StaticVector<T,Size> class has the Dense Vector 
<StaticVector<T,Size>> base class (see Figure 6-4). Thus, whenever a
common base class is required, a common abstraction that can be used, for
instance, to store different types in a collection, the CRTP design pattern is
not the right choice.
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Figure 6-4. Dependency graph for the CRTP design pattern

“Oh, wow, I see that this could be a real limitation. But couldn’t we just
make the CRTP base class derive from a common base class?” you argue.



No, not really, because this would require us to introduce virtual functions
again. “OK, I see. What about simulating a common base class using
std::variant?” Yes, that’s an option. However, please remember that
std::variant is a representation of the Visitor design pattern (see
“Guideline 16: Use Visitor to Extend Operations”). And since
std::variant needs to know about all its potential alternatives, this will
limit your freedom to add new types. So you see, even though you might
not like it, CRTP really is not a replacement for every inheritance hierarchy.

The second, also potentially very limiting drawback is that everything that
comes in touch with a CRTP base class becomes a template itself. That is
particularly true for all functions that work with such a base class. Consider,
for instance, the upgraded output operator and the l2norm() function:

template< typename Derived > 
std::ostream& operator<<( std::ostream& os, DenseVector<Derived> const& vector 
); 
 
template< typename Derived > 
auto l2norm( DenseVector<Derived> const& vector );

These two functions should work with all classes deriving from the
DenseVector CRTP class. And of course they should not depend on the
concrete types of the derived classes. Therefore, these two functions must
be function templates: the Derived type must be deduced. While in the
context of a linear algebra library this is usually not an issue because almost
all functionality is implemented in terms of templates anyway, this may be a
big downside in other contexts. It might be highly undesirable to turn lots of
code into templates and move the definitions into header files, effectively
sacrificing the encapsulation of source files. Yes, this may be a severe
drawback indeed!

Third, CRTP is an intrusive design pattern. Deriving classes have to
explicitly opt in by inheriting from the CRTP base class. While this may be
a nonissue in our own code, you cannot easily add a base class to foreign
code. In such a situation, you would have to resort to the Adapter design
pattern (see “Guideline 24: Use Adapters to Standardize Interfaces”). Thus,



CRTP does not provide the flexibility of nonintrusive design patterns (e.g.,
the Visitor design pattern implemented with std::variant, the Adapter
design pattern, and so on).

Last but not least, CRTP does not provide runtime polymorphism, only
compile-time polymorphism. Therefore, the pattern makes sense only if
some kind of static type abstraction is required. If not, it is again not a
replacement for all inheritance hierarchies.

The Future of CRTP: A Comparison Between CRTP and
C++20 Concepts
“I understand, you’re right. CRTP is pure compile-time polymorphism.
However, this makes me wonder: wouldn’t it be possible to build on C++20
concepts instead of CRTP? Consider the following code. We could use a
concept to define the requirements for a set of types, and restrict functions
and operators to only those types that provide the expected interface:”

template< typename T > 
concept DenseVector = 
   requires ( T t, size_t index ) { 
      t.size(); 
      t[index]; 
      { t.begin() } -> std::same_as<typename T::iterator>; 
      { t.end() } -> std::same_as<typename T::iterator>; 
   } && 
   requires ( T const t, size_t index ) { 
      t[index]; 
      { t.begin() } -> std::same_as<typename T::const_iterator>; 
      { t.end() } -> std::same_as<typename T::const_iterator>; 
   }; 
 
template< DenseVector VectorT > 
std::ostream& operator<<( std::ostream& os, VectorT const& vector ) 
{ 
   // ... as before 
}

You are absolutely correct. I agree, this is a very reasonable alternative.
Indeed, C++20 concepts are pretty similar to CRTP but represent an easier,
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nonintrusive alternative. Especially by being nonintrusive, if you have
access to C++20 concepts and it is possible to define the static set of types
by a concept, you should prefer the concept over the CRTP.

Still, I’m not entirely happy with this solution. While this formulation of the
output operator effectively constrains the function template to only those
types that provide the expected interface, it does not completely restrict the
function template to our set of dense vector types. It’s still possible to pass
std::vector and std::string (std::string already has an output
operator in the std namespace). Therefore, this concept is not specific
enough. But if you run into this situation, don’t worry: there is a solution
using a tag class:

 
struct DenseVectorTag {};   
 
template< typename T > 
concept DenseVector = 
   // ... Definition of all requirements on a dense vector (as before) 
   && std::is_base_of_v<DenseVectorTag,T>; 
 
template< typename T > 
class DynamicVector : private DenseVectorTag   
{ 
   // ... 
}; 

By inheriting (preferably nonpublicly) from the DenseVectorTag class ( ),
classes like DynamicVector can identify as being part of a certain set of
types ( ). Function and operator templates can therefore be effectively
limited to accept only those types that explicitly opt in to the set of types.
Unfortunately, there’s a catch: this approach is no longer nonintrusive. To
overcome this limitation, we introduce a compile-time indirection by a
customizable type trait class. In other words, we apply the SRP and separate
concerns:

 
struct DenseVectorTag {}; 
 



template< typename T > 
struct IsDenseVector   
   : public std::is_base_of<DenseVectorTag,T> 
{}; 
 
template< typename T > 
constexpr bool IsDenseVector_v = IsDenseVector<T>::value;   
 
template< typename T > 
concept DenseVector = 
   // ... Definition of all requirements on a dense vector (as before) 
   && IsDenseVector_v<T>;   
 
template< typename T > 
class DynamicVector : private DenseVectorTag   
{ 
   // ... 
}; 
 
template< typename T, size_t Size > 
class StaticVector 
{ 
   // ... 
}; 
 
template< typename T, size_t Size > 
struct IsDenseVector< StaticVector<T,Size> >   
   : public std::true_type 
{}; 

The IsDenseVector class template, along with its corresponding variable
template, indicates whether a given type is part of the set of dense vector
types (  and ). Instead of directly querying a given type, the DenseVector
concept would ask indirectly via the IsDenseVector type trait ( ). This
opens up the opportunity for classes to either intrusively derive from the
DenseVectorTag ( ) or to nonintrusively specialize the IsDenseVector
type trait ( ). In this form, the concepts approach truly supersedes the
classic CRTP approach.

In summary, CRTP is an amazing design pattern for defining a compile-
time relationship between a family of related types. Most interestingly, it
resolves all performance issues that you may have with inheritance
hierarchies. However, CRTP comes with a couple of potentially limiting



drawbacks, such as the lack of a common base class, the quick spreading of
template code, and the restriction to compile-time polymorphism. With
C++20, consider replacing CRTP with concepts, which provide an easier
and nonintrusive alternative. However, if you do not have access to C++20
concepts and if CRTP fits, it will prove immensely valuable to you.

GUIDELINE 26: USE CRTP TO INTRODUCE STATIC
TYPE CATEGORIES

Apply the CRTP design pattern to define a compile-time
abstraction for a family of related types.

Be aware of the limited access from the CRTP base class to the
derived class.

Keep in mind the restrictions of the CRTP design pattern, in
particular, the lack of a common base class.

Prefer C++20 concepts to the CRTP design pattern when possible.

Guideline 27: Use CRTP for Static Mixin
Classes
In “Guideline 26: Use CRTP to Introduce Static Type Categories”, I
introduced you to the CRTP design pattern. I may also have given you the
impression that CRTP is old hat, made obsolete by the advent of C++20
concepts. Well, interestingly it is not. At least not entirely. That’s because I
haven’t told you the complete story yet. CRTP may still be of value: just not
as a design pattern but as an implementation pattern. So let’s take a detour
into the realm of implementation patterns and let me explain.

A Strong Type Motivation



Consider the following StrongType class template, which represents a
wrapper around any other type for the purpose of creating a unique, named
type:

//---- <StrongType.h> ---------------- 
 
#include <utility> 
 
template< typename T, typename Tag > 
struct StrongType 
{ 
 public: 
   using value_type = T; 
 
   explicit StrongType( T const& value ) : value_( value ) {} 
 
   T&       get()       { return value_; } 
   T const& get() const { return value_; } 
 
 private: 
   T value_; 
};

This class can, for instance, be used to define the types Meter, Kilometer,
and Surname:

//---- <Distances.h> ---------------- 
 
#include <StrongType.h> 
 
template< typename T > 
using Meter = StrongType<T,struct MeterTag>; 
 
template< typename T > 
using Kilometer = StrongType<T,struct KilometerTag>; 
 
// ... 
 
 
//---- <Person.h> ---------------- 
 
#include <StrongType.h> 
 
using Surname = StrongType<std::string,struct SurnameTag>; 
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// ...

The use of alias templates for Meter and Kilometer enables you to choose,
for instance, long or double to represent a distance. However, although
these types are built on fundamental types or Standard Library types, such
as std::string in the case of Surname, they represent distinct types
(strong types) with semantic meaning that cannot be (accidentally)
combined in arithmetic operations, for example, addition:

 
//---- <Main.cpp> ---------------- 
 
#include <Distances.h> 
#include <cstdlib> 
 
int main() 
{ 
   auto const m1 = Meter<long>{ 120L }; 
   auto const m2 = Meter<long>{  50L }; 
   auto const km = Kilometer<long>{ 30L }; 
   auto const surname1 = Surname{ "Stroustrup" }; 
   auto const surname2 = Surname{ "Iglberger" }; 
   // ... 
 
   m1 + km;              // Correctly does not compile!   
   surname1 + surname2;  // Also correctly does not compile!   
   m1 + m2;              // Inconveniently this does not compile either.   
 
   return EXIT_SUCCESS; 
} 

Although both Meter and Kilometer are represented via long, it isn’t
possible to directly add Meter and Kilometer together ( ). This is great: it
doesn’t leave any opening for accidental bugs to crawl in. It’s also not
possible to add two Surnames, although std::string provides an addition
operator for string concatenation ( ). But this is also great: the strong type
effectively restricts undesired operations of the underlying type.
Unfortunately, this “feature” also prevents the addition of two Meter
instances ( ). This operation would be desirable, though: it is intuitive,
natural, and since the result of the operation would again be of type Meter,



physically accurate. To make this work, we could implement an addition
operator for the Meter type. However, obviously, this would not remain the
only addition operator. We would also need one for all the other strong
types, such as Kilometer, Mile, Foot, etc. Since all of these
implementations would look the same, this would be a violation of the DRY
principle. Therefore, it appears to be reasonable to extend the StrongType
class template with an addition operator:

template< typename T, typename Tag > 
StrongType<T,Tag> 
   operator+( StrongType<T,Tag> const& a, StrongType<T,Tag> const& b ) 
{ 
   return StrongType<T,Tag>( a.get() + b.get() ); 
}

Whereas due to the formulation of this addition operator it is not possible to
add two different instantiations of StrongType together (e.g., Meter and
Kilometer), it would enable the addition of two instances of the same
instantiation of StrongType. “Oh, but I see a problem: while it would now
be possible to add two Meters or two Kilometers, it would also be possible
to add two Surnames. We don’t want that!” You are correct: this would be
undesirable. What we need instead is a deliberate addition of operations to
specific instantiations of StrongType. This is where CRTP comes into play.

Using CRTP as an Implementation Pattern
Instead of directly equipping the StrongType class template with
operations, we provide the operations via mixin classes: base classes that
“inject” the desired operations. These mixin classes are implemented in
terms of the CRTP. Consider, for instance, the Addable class template,
which represents the addition operation:

 
//---- <Addable.h> ---------------- 
 
template< typename Derived > 
struct Addable 
{ 



   friend Derived& operator+=( Derived& lhs, Derived const& rhs ) {   
      lhs.get() += rhs.get(); 
      return lhs; 
   } 
 
   friend Derived operator+( Derived const& lhs, Derived const& rhs ) {   
      return Derived{ lhs.get() + rhs.get() }; 
   } 
}; 

The name of the template parameters gives it away: Addable is a CRTP
base class. Addable provides only two functions, implemented as hidden
friends: an addition assignment operator ( ) and an addition operator ( ).
Both operators are defined for the specified Derived type and are injected
into the surrounding namespace.  Thus, any class deriving from this CRTP
base class will “inherit” two free addition operators:

//---- <StrongType.h> ---------------- 
 
#include <stdlib> 
#include <utility> 
 
template< typename T, typename Tag > 
struct StrongType : private Addable< StrongType<T,Tag> > 
{ /* ... */ }; 
 
 
//---- <Distances.h> ---------------- 
 
#include <StrongType.h> 
 
template< typename T > 
using Meter = StrongType<T,struct MeterTag>; 
 
// ... 
 
 
//---- <Main.cpp> ---------------- 
 
#include <Distances.h> 
#include <cstdlib> 
 
int main() 
{ 
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   auto const m1 = Meter<long>{ 100 }; 
   auto const m2 = Meter<long>{  50 }; 
 
   auto const m3 = m1 + m2;  // Compiles and results in 150 meters 
   // ... 
 
   return EXIT_SUCCESS; 
}

“I understand the purpose of the mixin class, but in this form, all
instantiations of StrongType would inherit an addition operator, even the
ones where an addition is not required, right?” Yes, indeed. Therefore, we
aren’t finished yet. What we want to do is to selectively add the mixin class
to those StrongType instantiations that need the operation. Our solution of
choice is to provide the mixins in the form of optional template arguments.
For that purpose, we extend the StrongType class template by a pack of
variadic template template parameters:

 
//---- <StrongType.h> ---------------- 
 
#include <utility> 
 
template< typename T, typename Tag, template<typename> class... Skills > 
struct StrongType 
   : private Skills< StrongType<T,Tag,Skills...> >...   
{ /* ... */ }; 

This extension enables us to individually specify, for each single strong
type, which skills are desired. Consider, for instance, the two additional
skills Printable and Swappable:

//---- <Printable.h> ---------------- 
 
template< typename Derived > 
struct Printable 
{ 
   friend std::ostream& operator<<( std::ostream& os, const Derived& d ) 
   { 
      os << d.get(); 
      return os; 
   } 
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}; 
 
 
//---- <Swappable.h> ---------------- 
 
template< typename Derived > 
struct Swappable 
{ 
   friend void swap( Derived& lhs, Derived& rhs ) 
   { 
      using std::swap;  // Enable ADL 
      swap( lhs.get(), rhs.get() ); 
   } 
};

Together with the Addable skill, we can now assemble strong types
equipped with the required and desired skills:

 
//---- <Distances.h> ---------------- 
 
#include <StrongType.h> 
 
template< typename T > 
using Meter = 
   StrongType<T,struct MeterTag,Addable,Printable,Swappable>;   
 
template< typename T > 
using Kilometer = 
   StrongType<T,struct KilometerTag,Addable,Printable,Swappable>;   
 
// ... 
 
 
//---- <Person.h> ---------------- 
 
#include <StrongType.h> 
#include <string> 
 
using Surname = 
   StrongType<std::string,struct SurnameTag,Printable,Swappable>;   
 
// ... 



Both Meter and Kilometer can be added, printed, and swapped (see  and 
), while Surname is printable and swappable, but not addable (i.e., does

not receive the Addable mixin and therefore does not derive from it) ( ).

“That’s great. I understand the purpose of the CRTP mixin class in this
context. But how is this CRTP example different from previous examples?”
Very good question. You’re right, the implementation details are very
similar. But there are a couple of distinctive differences. Note that the CRTP
base class doesn’t provide a virtual or protected destructor. Hence, in
contrast to previous examples, it is not designed as a polymorphic base
class. Also note that in this example it is sufficient, and even preferable, to
use the CRTP base class as a private base class, not a public one ( ).

Thus, in this context, the CRTP base class does not represent an abstraction
but only an implementation detail. Therefore, the CRTP does not fulfill the
properties of a design pattern, and it does not act as a design pattern. It’s
still a pattern, no question there, but it merely acts as an implementation
pattern in this case.

The major difference in the implementation of the CRTP examples is the
way we use inheritance. For the CRTP design pattern, we use inheritance as
an abstraction according to the LSP: the base class represents the
requirements, and thus the available and expected behavior of the derived
class. User code directly accesses the operations via pointers or references
to the base class, which in turn requires us to provide a virtual or
protected destructor. When implemented this way, CRTP becomes a true
element of software design—a design pattern.

In contrast, for the CRTP implementation pattern, we use inheritance for
technical elegance and convenience. The base class becomes an
implementation detail and does not have to be known or used by calling
code. Therefore, it doesn’t need a virtual or protected destructor. When
implemented this way, CRTP stays on the level of the implementation
details and therefore is an implementation pattern. In this form, however,
CRTP does not compete with C++20 concepts. On the contrary: in this form
CRTP is unchallenged, as it represents a unique technique to provide static



mixin functionality. For that reason, CRTP is still in use today and
represents a valuable addition to every C++ developer’s toolbox.

In summary, CRTP is not obsolete, but its value has changed. In C++20,
CRTP is replaced by concepts and therefore is stepping down as a design
pattern. However, it continues to be valuable as an implementation pattern
for mixin classes.

GUIDELINE 27: USE CRTP FOR STATIC MIXIN
CLASSES

Be aware between the difference between using CRTP as a design
pattern and using it as an implementation pattern.

Understand that CRTP base classes that represent an abstraction
act as a design pattern.

Understand that CRTP base classes that do not represent an
abstraction act as an implementation pattern.

1  The Pages format is Apple’s equivalent to Microsoft’s Word format.

2  Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software.

3  If you’re an expert on design patterns, you might realize that a 1-to-N Adapter has a certain
similarity to the Facade design pattern. See the GoF book for more details.

4  In C++20, you achieve a similar effect by applying the [[no_unique_address]] attribute to
a data member. If the data member is empty, it might not occupy any storage on its own.

5  In this context, it’s particularly interesting to note that std::stack doesn’t allow you to
traverse the elements via iterators. As usual for a stack, you’re allowed to access only the
topmost element.

6  Matthew Wilson, Imperfect C++: Practical Solutions for Real-Life Programming (Addison-
Wesley, 2004).

7  Eric Freeman and Elisabeth Robson, Head First Design Patterns: Building Extensible and
Maintainable Object-Oriented Software (O’Reilly, 2021).
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9  Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software.

10  Despite the fact that I don’t venture into the thicket of Observer implementation details, I can
still give you a few references on how to implement Observers. A good overview on many of
the implementation aspects is Victor Ciura’s CppCon 2021 talk “Spooky Action at a Distance”.
A very detailed discussion on how to deal with the concurrency issues of the Observer pattern
can be found in Tony Van Eerd’s C++Now 2016 talk “Thread-Safe Observer Pattern—You’re
Doing It Wrong”.
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12  Alternatively, the observer could also remember the subject on its own.

13  You can also choose to build on gsl::not_null<T> from the Guideline Support Library
(GSL).

14  If you’re wondering what those others stand for: RAII: Resource Acquisition Is Initialization
(which is argued to be the most valuable idea of C++, but at the same time is officially the
worst acronym; it literally does not make any sense); ADL: Argument Dependent Lookup;
CTAD: Class Template Argument Deduction; SFINAE: Substitution Failure Is Not An Error;
NTTP: Non-Type Template Parameter; IFNDR: Ill-Formed, No Diagnostic Required; SIOF:
Static Initialization Order Fiasco. For an overview of (almost) all C++ acronyms, see Arthur
O’Dwyer’s blog.

15  Ah, the C++ Report—such glorious times! However, you may be one of the poor souls who
never had an opportunity to read an original C++ Report. If so, you should know that it was a
bimonthly computer magazine published by the SIGS Publications Group between 1989 and
2002. The original C++ Report is hard to come by these days, but many of its articles have
been collected in the book edited by Stanley Lippmann C++ Gems: Programming Pearls from
the C++ Report (Cambridge University Press). This book includes James Coplien’s article
“Curiously Recurring Template Patterns.”

16  If you can’t use C++20 concepts yet, std::enable_if provides an alternative formulation.
Refer to Core Guideline T.48: “If your compiler does not support concepts, fake them with
enable_if.” See also your preferred C++ templates reference.

17  Consider any kind of cast (static_cast, reinterpret_cast, const_cast, dynamic_cast,
and especially the old C-style casts) as adult features: you take full responsibility of your
actions and the compiler will obey. Therefore, it is seriously advisable to reduce calls to cast
operators (see also Core Guideline ES.48: “Avoid casts”).

18  This is a great example to demonstrate that it pays off to be able to compile your codebase
with several major compilers (Clang, GCC, MSVC, etc.). Different error messages might help
you find the source of the problem. Using only one compiler should be considered a risk!

19  If you aren’t familiar with the idea or syntax of C++20 concepts yet, you can get a quick and
painless introduction in Sándor Dargó’s C++ Concepts, published at Leanpub.
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20  This implementation of a StrongType is inspired by Jonathan Boccara’s Fluent C++ blog and
the associated NamedType library. There are several more strong type libraries available,
though: alternatively you can use Jonathan Müller’s type_safe library, Björn Fahller’s
strong_type library, or Anthony William’s strong_typedef library.

21  The only technical oddity is the declaration of a tag class right in the template parameter list.
Yes, this works, and definitely helps create a unique type for the purpose of instantiating
distinct strong types.

22  Many years ago, more specifically at the end of the ’90s, this kind of namespace injection was
called the Barton-Nackman trick, named after John J. Barton and Lee R. Nackman. In the
March 1995 issue of the C++ Report, they used namespace injection as a workaround for the
limitation that function templates could not be overloaded at the time. Surprisingly, today this
technique has experienced a renaissance as the hidden friend idiom.

23  In Jonathan Bocarra’s blog, these optional, variadic arguments are aptly called skills. I very
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Chapter 7. The Bridge,
Prototype, and External
Polymorphism Design Patterns

In this chapter, we will focus on two classic GoF design patterns: the Bridge
design pattern and the Prototype design pattern. Additionally, we will study
the External Polymorphism design pattern. At first glance, this selection
may appear as an illustrious, almost random choice of design patterns.
However, I picked these patterns for two reasons: first, in my experience,
these three are among the most useful in the catalog of design patterns. For
that reason, you should have a pretty good idea about their intent,
advantages, and disadvantages. Second and equally important: they will all
play a vital role in Chapter 8.

In “Guideline 28: Build Bridges to Remove Physical Dependencies”, I will
acquaint you with the Bridge design pattern and its simplest form, the Pimpl
idiom. Most importantly, I will demonstrate how you can use Bridges to
reduce physical coupling by decoupling an interface from implementation
details.

In “Guideline 29: Be Aware of Bridge Performance Gains and Losses”, we
will take an explicit look at the performance impact of Bridges. We will run
benchmarks for an implementation without Bridge, a Bridge-based
implementation, and a “partial” Bridge.

In “Guideline 30: Apply Prototype for Abstract Copy Operations”, I will
introduce you to the art of cloning. That is to say, that we will talk about
copy operations and, in particular, abstract copy operations. The pattern of
choice for this intent will be the Prototype design pattern.

In “Guideline 31: Use External Polymorphism for Nonintrusive Runtime
Polymorphism”, we continue the journey of separating concerns by



extracting the implementation details of a function from a class. To further
reduce dependencies, however, we will take this separation of concerns to a
whole new level: we will extract not only the implementation details of
virtual functions but also the complete functions themselves, with the
External Polymorphism design pattern.

Guideline 28: Build Bridges to Remove
Physical Dependencies
According to dictionaries, the term bridge expresses a time, a place, or a
means of connection or transition. If I were to ask what the term bridge
means to you, I’m pretty certain you would have a similar definition. You
might implicitly think about connecting two things, and thus bringing these
things closer together. For instance, you might think about a city divided by
a river. A bridge would connect the two sides of the city, bring them closer
together, and save people a lot of time. You might also think about
electronics, where a bridge connects two independent parts of a circuit.
There are bridges in music and many more examples from the real world,
where bridges help connect things. Yes, intuitively the term bridge suggests
an increase in closeness and proximity. So naturally, the Bridge design
pattern is about the polar opposite: it supports you in reducing physical
dependencies and helps to decouple, i.e., it keeps two pieces of
functionality that need to work together but shouldn’t know too many
details about each other, at arm’s length.

A Motivating Example
To explain what I have in mind, consider the following ElectricCar class:

 
//---- <ElectricEngine.h> ---------------- 
 
class ElectricEngine 
{ 
 public: 
   void start(); 



   void stop(); 
 
 private: 
   // ... 
}; 
 
 
//---- <ElectricCar.h> ---------------- 
 
#include <ElectricEngine.h> 
// ... 
 
class ElectricCar 
{ 
 public: 
   ElectricCar( /*maybe some engine arguments*/ ); 
 
   void drive(); 
   // ... 
 private: 
   ElectricEngine engine_;   
 
   // ... more car-specific data members (wheels, drivetrain, ...) 
}; 
 
 
//---- <ElectricCar.cpp> ---------------- 
 
#include <ElectricCar.h> 
 
ElectricCar::ElectricCar( /*maybe some engine arguments*/ ) 
   : engine_{ /*engine arguments*/ } 
   // ... Initialization of the other data members 
{} 
 
// ... 

As the name suggests, the ElectricCar class is equipped with an
ElectricEngine ( ). However, while in reality such a car may be pretty
attractive, the current implementation details are concerning: because of the
engine_ data member, the <ElectricCar.h> header file needs to include
the <ElectricEngine.h> header. The compiler needs to see the class
definition of ElectricEngine, because otherwise it would not be able to
determine the size of an ElectricCar instance. Including the



<ElectricEngine.h> header, however, easily results in transitive, physical
coupling: every file that includes the <ElectricCar.h> header will
physically depend on the <ElectricEngine.h> header. Thus, whenever
something in the header changes, the ElectricCar class and potentially
many more classes are affected. They might have to be recompiled,
retested, and, in the worst case, even redeployed…sigh.

On top of that, this design reveals all implementation details to everyone.
“What do you mean? Isn’t it the point of the private section of the class to
hide and to encapsulate implementation details?” Yes, it may be private,
but the private label is merely an access label. It is not a visibility label.
Therefore, everything in your class definition (and I mean everything) is
visible to everyone who sees the ElectricCar class definition. This means
that you cannot change the implementation details of this class without
anyone noticing. In particular, this may be a problem if you need to provide
ABI stability, i.e., if the in-memory representation of your class must not
change.

A slightly better approach would be to only store a pointer to
ElectricEngine ( ):

 
//---- <ElectricCar.h> ---------------- 
 
#include <memory> 
// ... 
struct ElectricEngine;  // Forward declaration 
 
class ElectricCar 
{ 
 public: 
   ElectricCar( /*maybe some engine arguments*/ ); 
 
   void drive(); 
   // ... 
 private: 
   std::unique_ptr<ElectricEngine> engine_;   
 
   // ... more car-specific data members (wheels, drivetrain, ...) 
}; 
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//---- <ElectricCar.cpp> ---------------- 
 
#include <ElectricCar.h> 
#include <ElectricEngine.h>   
 
ElectricCar::ElectricCar( /*maybe some engine arguments*/ ) 
   : engine_{ std::make_unique<ElectricEngine>( /*engine arguments*/ ) } 
   // ... Initialization of the other data members 
{} 
 
// ... Other 'ElectricCar' member functions, using the pointer to an 
//     'ElectricEngine'. 

In this case, it is sufficient to provide only a forward declaration to the
ElectricEngine class, since the compiler doesn’t need to know the class
definition to be able to determine the size of an ElectricCar instance.
Also, the physical dependency is gone, since the <ElectricEngine.h>
header has been moved into the source file ( ). Hence, from a dependency
point of view, this solution is much better. What still remains is the
visibility of the implementation details. Everyone is still able to see that the
ElectricCar builds on an ElectricEngine, and thus everyone is still
implicitly depending on these implementation details. Consequently, any
change to these details, such as an upgrade to the new PowerEngine, would
affect any class that works with the <ElectricCar.h> header file. “And
that’s bad, right?” Indeed it is, because change is to be expected (see
“Guideline 2: Design for Change”). To get rid of this dependency and gain
the luxury of being able to easily change the implementation details at any
time without anyone noticing, we have to introduce an abstraction. The
classic form of abstraction is the introduction of an abstract class:

 
//---- <Engine.h> ---------------- 
 
class Engine   
{ 
 public: 
   virtual ~Engine() = default; 
   virtual void start() = 0; 
   virtual void stop() = 0; 
   // ... more engine-specific functions 



 
 private: 
   // ... 
}; 
 
 
//---- <ElectricCar.h> ---------------- 
 
#include <Engine.h> 
#include <memory> 
 
class ElectricCar 
{ 
 public: 
   void drive(); 
   // ... 
 private: 
   std::unique_ptr<Engine> engine_;   
 
   // ... more car-specific data members (wheels, drivetrain, ...) 
}; 
 
 
//---- <ElectricEngine.h> ---------------- 
 
#include <Engine.h> 
 
class ElectricEngine : public Engine 
{ 
 public: 
   void start() override; 
   void stop() override; 
 
 private: 
   // ... 
}; 
 
 
//---- <ElectricCar.cpp> ---------------- 
 
#include <ElectricCar.h> 
#include <ElectricEngine.h> 
 
ElectricCar::ElectricCar( /*maybe some engine arguments*/ ) 
   : engine_{ std::make_unique<ElectricEngine>( /*engine arguments*/ ) }   
   // ... Initialization of the other data members 
{} 
 



// ... Other 'ElectricCar' member functions, primarily using the 'Engine' 
//     abstraction, but potentially also explicitly dealing with an 
//     'ElectricEngine'. 

With the Engine base class in place ( ), we can implement our
ElectricCar class using this abstraction ( ). No one needs to be aware of
the actual type of engine that we use. And no one needs to know when we
upgrade our engine. With this implementation, we can easily change the
implementation details at any time by only modifying the source file ( ).
Therefore, with this approach, we’ve truly minimized dependencies on the
ElectricEngine implementation. We have made the knowledge about this
detail our own, secret implementation detail. And by doing that, we have
built ourselves a Bridge.

NOTE
As stated in the introduction, counterintuitively, this Bridge isn’t about bringing the
ElectricCar and Engine classes closer together. On the contrary, it’s about separating
concerns and about loose coupling. Another example that shows that naming is hard
comes from Kate Gregory’s talk at CppCon.

The Bridge Design Pattern Explained
The Bridge design pattern is yet another one of the classic GoF design
patterns introduced in 1994. The purpose of a Bridge is to minimize
physical dependencies by encapsulating some implementation details
behind an abstraction. In C++, it acts as a compilation firewall, which
enables easy change:

THE BRIDGE DESIGN PATTERN
Intent: “Decouple an abstraction from its implementation so that the two can vary
independently.”3

https://oreil.ly/YfDpP


In this formulation of the intent, the Gang of Four talks about an
“abstraction” and an “implementation.” In our example, the ElectricCar
class represents the “abstraction,” while the Engine class represents the
“implementation” (see Figure 7-1). Both of these should be able to vary
independently; i.e., changes to either one should have no effect on the other.
The impediments to easy change are the physical dependencies between the
ElectricCar class and its engines. Thus, the idea is to extract and isolate
these dependencies. By isolating them in the form of the Engine
abstraction, separating concerns, and fulfilling the SRP, you gain the
flexibility to change, tune, or upgrade the engine any way you want (see
“Guideline 2: Design for Change”). The change is no longer visible in the
ElectricCar class. As a consequence, it is now easily possible to add new
kinds of engines without the “abstraction” noticing. This adheres to the idea
of the OCP (see “Guideline 5: Design for Extension”).



Figure 7-1. The UML representation of the basic Bridge design pattern

While this provides us the ability to easily apply changes, and implements
the idea of a Bridge, there is one more step that we can take to further
decouple and reduce duplication. Let’s assume that we are not just
interested in electric cars but also in cars with combustion engines. So for
every kind of car that we plan to implement, we are interested in
introducing the same kind of decoupling from engine details, i.e., the same
kind of Bridge. To reduce the duplication and follow the DRY principle, we



can extract the Bridge-related implementation details into the Car base class
(see Figure 7-2).

Figure 7-2. The UML representation of the full Bridge design pattern

The Car base class encapsulates the Bridge to the associated Engine:

 
//---- <Car.h> ---------------- 
 
#include <Engine.h> 
#include <memory> 



#include <utility> 
 
class Car 
{ 
 protected: 
   explicit Car( std::unique_ptr<Engine> engine )   
      : pimpl_( std::move(engine) ) 
   {} 
 
 public: 
   virtual ~Car() = default; 
   virtual void drive() = 0; 
   // ... more car-specific functions 
 
 protected: 
   Engine*       getEngine()       { return pimpl_.get(); }   
   Engine const* getEngine() const { return pimpl_.get(); } 
 
 private: 
   std::unique_ptr<Engine> pimpl_;  // Pointer-to-implementation (pimpl)   
 
   // ... more car-specific data members (wheels, drivetrain, ...) 
}; 

With the addition of the Car class, both the “abstraction” and the
“implementation” offer the opportunity for easy extension and can vary
independently. While the Engine base class still represents the
“implementation” in this Bridge relation, the Car class now plays the role of
the “abstraction.” The first noteworthy detail about the Car class is the
protected constructor ( ). This choice makes sure that only derived
classes are able to specify the kind of engine. The constructor takes
std::unique_ptr to an Engine and moves it to its pimpl_ data member (
). This pointer data member is the one pointer-to-implementation for all
kinds of Cars and is commonly called the pimpl. This opaque pointer
represents the Bridge to the encapsulated implementation details and
essentially represents the Bridge design pattern as a whole. For this reason,
it’s a good idea to use the name pimpl in the code as an indication of your
intentions (remember “Guideline 14: Use a Design Pattern’s Name to
Communicate Intent”).



Note that pimpl_ is declared in the private section of the class, despite the
fact that derived classes will have to use it. This choice is motivated by
Core Guideline C.133:

Avoid protected data.

Indeed, experience shows that protected data members are barely better
than public data members. Therefore, to grant access to the pimpl, the Car
class instead provides the protected getEngine() member functions ( ).

The ElectricCar class is adapted accordingly:

 
//---- <ElectricCar.h> ---------------- 
 
#include <Engine.h> 
#include <memory> 
 
class ElectricCar : public Car   
{ 
 public: 
   explicit ElectricCar( /*maybe some engine arguments*/ ); 
 
   void drive() override; 
   // ... 
}; 
 
 
//---- <ElectricCar.cpp> ---------------- 
 
#include <ElectricCar.h> 
#include <ElectricEngine.h> 
 
ElectricCar::ElectricCar( /*maybe some engine arguments*/ ) 
   : Car( std::make_unique<ElectricEngine>( /*engine arguments*/ ) )   
{} 
 
// ... 

Rather than implementing the Bridge itself, the ElectricCar class now
inherits from the Car base class ( ). This inheritance relationship introduces
the requirement of initializing the Car base by specifying an Engine. This
task is performed in the ElectricCar constructor ( ).
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The Pimpl Idiom
There is a much simpler form of the Bridge design pattern that has been
very commonly and successfully used in both C and C++ for decades. To
see an example, let’s consider the following Person class:

class Person 
{ 
 public: 
   // ... 
   int year_of_birth() const; 
   // ... Many more access functions 
 
 private: 
   std::string forename_; 
   std::string surname_; 
   std::string address_; 
   std::string city_; 
   std::string country_; 
   std::string zip_; 
   int year_of_birth_; 
   // ... Potentially many more data members 
};

A person consists of a lot of data members: forename, surname, the
complete postal address, year_of_birth, and potentially many more.
There may be the need to add further data members in the future: a mobile
phone number, a Twitter account, or the account information for the next
social media fad. In other words, it stands to reason that the Person class
needs to be extended or changed over time, potentially even frequently.
This may come with a whole lot of inconveniences for users of this class:
whenever Person changes, the users of Person have to recompile their
code. Not to mention ABI stability: the size of a Person instance is going to
change!

To hide all changes to the implementation details of Person and gain ABI
stability, you can use the Bridge design pattern. In this particular case,
however, there is no need to provide an abstraction in the form of a base
class: there is one, and exactly one, implementation for Person. Therefore,
all we do is introduce a private, nested class called Impl ( ):



 
//---- <Person.h> ---------------- 
 
#include <memory> 
 
class Person 
{ 
 public: 
   // ... 
 
 private: 
   struct Impl;   
   std::unique_ptr<Impl> const pimpl_;   
}; 
 
//---- <Person.cpp> ---------------- 
 
#include <Person.h> 
#include <string> 
 
struct Person::Impl   
{ 
   std::string forename; 
   std::string surname; 
   std::string address; 
   std::string city; 
   std::string country; 
   std::string zip; 
   int year_of_birth; 
   // ... Potentially many more data members 
}; 

The sole task of the nested Impl class is to encapsulate the implementation
details of Person. Thus, the only data member remaining in the Person
class is the std::unique_ptr to an Impl instance ( ). All other data
members, and potentially some non-virtual helper functions, are moved
from the Person class into the Impl class. Note that the Impl class is only
declared in the Person class but not defined. Instead, it is defined in the
corresponding source file ( ). Only due to this, all details and all changes
that you apply to the details, such as adding or removing data members,
changing the type of data members, etc., are hidden from the users of
Person.



This implementation of Person uses the Bridge design pattern in its
simplest form: this local, nonpolymorphic form of Bridge is called the
Pimpl idiom. It comes with all the decoupling advantages of the Bridge
pattern but, despite its simplicity, it still results in a bit more complex
implementation of the Person class:

 
//---- <Person.h> ---------------- 
 
//#include <memory> 
 
class Person 
{ 
 public: 
   // ... 
   Person();    
   ~Person();   
 
   Person( Person const& other );   
   Person& operator=( Person const& other );   
 
   Person( Person&& other );   
   Person& operator=( Person&& other );   
 
   int year_of_birth() const;   
   // ... Many more access functions 
 
 private: 
   struct Impl; 
   std::unique_ptr<Impl> const pimpl_; 
}; 
 
//---- <Person.cpp> ---------------- 
 
//#include <Person.h> 
//#include <string> 
 
struct Person::Impl 
{ 
   // ... 
}; 
 
Person::Person()   
   : pimpl_{ std::make_unique<Impl>() } 
{} 
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Person::~Person() = default;   
 
Person::Person( Person const& other )   
   : pimpl_{ std::make_unique<Impl>(*other.pimpl_) } 
{} 
 
Person& Person::operator=( Person const& other )   
{ 
   *pimpl_ = *other.pimpl_; 
   return *this; 
} 
 
Person::Person( Person&& other )   
   : pimpl_{ std::make_unique<Impl>(std::move(*other.pimpl_)) } 
{} 
 
Person& Person::operator=( Person&& other )   
{ 
   *pimpl_ = std::move(*other.pimpl_); 
   return *this; 
} 
 
int Person::year_of_birth() const   
{ 
   return pimpl_->year_of_birth; 
} 
 
// ... Many more Person member functions 

The Person constructor initializes the pimpl_ data member by
std::make_unique() ( ). This, of course, involves a dynamic memory
allocation, which means that the dynamic memory needs to be cleaned up
again. “And that is why we use std::unique_ptr,” you say. Correct. But
perhaps surprisingly, although we use std::unique_ptr for that purpose,
it’s still necessary to manually deal with the destructor ( ).

“Why on earth do we have to do this? Isn’t the point of std::unique_ptr
that we don’t have to deal with cleanup?” Well, we still have to. Let me
explain: if you don’t write the destructor, the compiler feels obliged to
generate the destructor for you. Unfortunately, it would generate the
destructor in the <Person.h> header file. The destructor of Person would
trigger the instantiation of the destructor of the std::unique_ptr data



member, which in turn would require the definition of the destructor of the
Impl class. The definition of Impl, however, is not available in the header
file. On the contrary, it needs to be defined in the source file or it would
defeat the purpose of the Bridge. Thus, the compiler emits an error about
the incomplete type Impl. Fortunately, you do not have to let go of the
std::unique_ptr to resolve the issue (and in fact you should not let go of
it). The problem is rather simple to solve. All you have to do is move the
definition of the Person destructor to the source file: you declare the
destructor in the class definition and define it via =default in the source
file.

Since std::unique_ptr cannot be copied, you will have to implement the
copy constructor to preserve the copy semantics of the Person class ( ).
The same is true for the copy assignment operator ( ). Note that this
operator is implemented under the assumption that every instance of
Person will always have a valid pimpl_. This assumption explains the
implementation of the move constructor: instead of simply moving
std::unique_ptr, it performs a potentially failing, or throwing, dynamic
memory allocation with std::make_unique(). For that reason, it is not
declared as noexcept ( ).  This assumption also explains why the pimpl_
data member is declared as const. Once it’s initialized, the pointer will not
be changed anymore, not even in the move operations, including the move
assignment operator ( ).

The last detail worth noting is that the definition of the year_of_birth()
member function is located in the source file ( ). Despite the fact that this
simple getter function is a great inline candidate, the definition has to be
moved to the source file. The reason is that in the header file, Impl is an
incomplete type. Which means that within the header file, you are not able
to access any members (both data and functions). This is possible only in
the source file, or generally speaking, as soon as the compiler knows the
definition of Impl.

Comparison Between Bridge and Strategy

4
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“I have a question,” you say. “I see a strong resemblance between the
Bridge and the Strategy design pattern. I know you said that design patterns
are sometimes structurally very similar and that the only difference is their
intent. But what exactly is the distinction between these two?”  I
understand your question. The similarity between these two is truly a little
confusing. However, there is something you can use to tell them apart: how
the corresponding data member is initialized is a strong indicator about
which one you’re using.

If a class does not want to know about some implementation detail, and if
for that reason it provides the opportunity to configure the behavior by
passing in details from the outside (for instance, via a constructor or via a
setter function), then you are most likely dealing with the Strategy design
pattern. Because the flexible configuration of behavior, i.e., the reduction of
logical dependencies, is its primary focus, Strategy falls into the category of
a behavioral design pattern. For instance, in the following code snippet, the
constructor of the Database class is a telltale sign:

 
class DatabaseEngine 
{ 
 public: 
   virtual ~DatabaseEngine() = default; 
   // ... Many database-specific functions 
}; 
 
class Database 
{ 
 public: 
   explicit Database( std::unique_ptr<DatabaseEngine> engine ); 
   // ... Many database-specific functions 
 
 private: 
   std::unique_ptr<DatabaseEngine> engine_; 
}; 
 
// The database is unaware of any implementation details and requests them 
//   via its constructor from outside -> Strategy design pattern 
Database::Database( std::unique_ptr<DatabaseEngine> engine )   
   : engine_{ std::move(engine) } 
{} 

5



The actual type of DatabaseEngine is passed in from the outside ( ),
making this a good example of the Strategy design pattern.

Figure 7-3 shows the dependency graph for this example. Most importantly,
the Database class is on the same architectural level as the
DatabaseEngine abstraction, thus providing others with the opportunity to
implement the behavior (e.g., in the form of the
ConcreteDatabaseEngine). Since Database is depending only on the
abstraction, there is no dependency on any specific implementation.



Figure 7-3. Dependency graph for the Strategy design pattern

If, however, a class knows about the implementation details but primarily
wants to reduce the physical dependencies on these details, then you’re
most likely dealing with the Bridge design pattern. In that case, the class
does not provide any opportunity to set the pointer from outside, i.e., the
pointer is an implementation detail and set internally. Since the Bridge
design pattern primarily focuses on the physical dependencies of the



implementation details, not the logical dependencies, Bridge falls into the
category of structural design patterns. As an example, consider the
following code snippet:

 
class Database 
{ 
 public: 
   explicit Database(); 
   // ... 
 private: 
   std::unique_ptr<DatabaseEngine> pimpl_; 
}; 
 
// The database knows about the required implementation details, but does 
//   not want to depend too strongly on it -> Bridge design pattern 
Database::Database() 
   : pimpl_{ std::make_unique<ConcreteDatabaseEngine>( /*some arguments*/ ) }  
 

{} 

Again, there is a telltale sign for the application of the Bridge design
pattern: instead of accepting an engine from outside, the constructor of the
Database class is aware of the ConcreteDatabaseEngine and sets it
internally ( ).

Figure 7-4 shows the dependency graph for the Bridge implementation of
the Database example. Most notably, the Database class is on the same
architectural level as the ConcreteDatabaseEngine class and does not
leave any opportunity for others to provide different implementations. This
shows that in contrast to the Strategy design pattern, a Bridge is logically
coupled to a specific implementation but only physically decoupled via the
DatabaseEngine abstraction.



Figure 7-4. Dependency graph for the Bridge design pattern

Analyzing the Shortcomings of the Bridge Design
Pattern



“I can totally see why the Bridge design pattern is so popular in the
community. The decoupling properties are really great!” you exclaim.
“However, you keep telling me that every design has its pros and cons. I
expect there is a performance penalty?” Good, you remember that there are
always some disadvantages. And of course this includes the Bridge design
pattern, although it proves to be very useful. And yes, you’re correct to
assume that there is some performance overhead involved.

The first of five types of overhead results from the fact that Bridge
introduces an additional indirection: the pimpl pointer making all access to
the implementation details more expensive. However, how much of the
performance penalty this pointer causes is an issue that I will discuss
separately in “Guideline 29: Be Aware of Bridge Performance Gains and
Losses”. This is not the only source of performance overhead, though; there
are more. Depending on whether you use an abstraction, you also might
have to pay for the virtual function call overhead. Additionally, you’ll have
to pay more due to the lack of inlining of even the simplest function
accessing data members. And, of course, you will have to pay for an
additional dynamic memory allocation whenever you create a new instance
of a class implemented in terms of Bridge.  Last but not least, you should
also take into account the memory overhead caused by introducing the
pimpl pointer. So, yes, isolating the physical dependencies and hiding
implementation details is not free but results in a considerable overhead.
Still, this shouldn’t be a reason to generally discard the Bridge solution: it
always depends. For instance, if the underlying implementation performs
slow, expensive tasks, such as system calls, then this overhead might not be
measurable at all. In other words, whether or not to use a Bridge should be
decided on a case-by-case basis and backed up with performance
benchmarks.

Furthermore, you have seen the implementation details and realized that the
code complexity has increased. Since simplicity and readability of code are
a virtue, this should be considered a downside. It’s true that this affects only
the internals of a class, not the user code. But still, some of the details (e.g.,
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the need to define the destructor in the source file) might be confusing for
less-experienced developers.

In summary, the Bridge design pattern is one of the most valuable and most
commonly used solutions for reducing physical dependencies. Still, you
should be aware of the overhead and the complexity that a Bridge
introduces.

GUIDELINE 28: BUILD BRIDGES TO REMOVE
PHYSICAL DEPENDENCIES

Be aware of physical dependencies introduced by data members or
includes.

Apply the Bridge design pattern with the intent to isolate physical
dependencies from implementation details;

Prefer using a pimpl data member to communicate the use of a
Bridge.

Understand the strengths and the weaknesses of the Bridge design
pattern.

Know the difference between reducing physical dependencies
(Bridge) and reducing logical dependencies (Strategy).

Guideline 29: Be Aware of Bridge
Performance Gains and Losses
In “Guideline 28: Build Bridges to Remove Physical Dependencies”, we
took a detailed look at the Bridge design pattern. While I imagine the
design and decoupling aspect of Bridge left a positive impression on you, I
must make you aware that using this pattern may introduce a performance
penalty. “Yes, and that worries me. Performance is important to me, and it
sounds like a Bridge will create a massive performance overhead,” you say.



And this is a pretty common expectation. Since performance matters, I
really should give you an idea of how much overhead you have to expect
when using a Bridge. However, I should also demonstrate how to use
Bridges wisely to improve the performance of your code. Sounds
unbelievable? Well, let me show you how.

The Performance Impact of Bridges
As discussed in “Guideline 28: Build Bridges to Remove Physical
Dependencies”, the performance of a Bridge implementation is influenced
by many factors: access through an indirection, virtual function calls,
inlining, dynamic memory allocations, etc. Because of these factors and the
huge amount of possible combinations, there is no definitive answer to how
much performance a Bridge will cost you. There simply is no shortcut, no
substitute for assembling a couple of benchmarks for your own code and
running them to evaluate a definitive answer. What I want to demonstrate,
though, is that there is indeed a performance penalty of accessing through
an indirection, but you can still use a Bridge to actually improve
performance.

Let’s get started with giving you an idea about the benchmark. To form an
opinion on how costly the pointer indirection is, let’s compare the following
two implementations of a Person class:

#include <string> 
 
//---- <Person1.h> ---------------- 
 
class Person1 
{ 
 public: 
   // ... 
 private 
   std::string forename_; 
   std::string surname_; 
   std::string address_; 
   std::string city_; 
   std::string country_; 
   std::string zip_; 



   int year_of_birth_; 
};

The Person1 struct represents a type that is not implemented in terms of a
Bridge. All seven data members (six std::strings and one int) are
directly part of the struct itself. Altogether, and assuming a 64-bit machine,
the total size of one instance of Person1 is 152 bytes with Clang 11.1 and
200 bytes with GCC 11.1.

The Person2 struct, on the other hand, is implemented with the Pimpl
idiom:

//---- <Person2.h> ---------------- 
 
#include <memory> 
 
class Person2 
{ 
 public: 
   explicit Person2( /*...various person arguments...*/ ); 
   ~Person2(); 
   // ... 
 
 private: 
   struct Impl; 
   std::unique_ptr<Impl> pimpl_; 
}; 
 
 
//---- <Person2.cpp> ---------------- 
 
#include <Person2.h> 
#include <string> 
 
struct Person2::Impl 
{ 
   std::string forename; 
   std::string surname; 
   std::string address; 
   std::string city; 
   std::string country; 
   std::string zip; 
   int year_of_birth; 
}; 
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Person2::Person2( /*...various person arguments...*/ ) 
   : pimpl{ std::make_unique<Impl>( /*...various person arguments...*/ ) } 
{} 
 
Person2::~Person2() = default;

All seven data members have been moved into the nested Impl struct and
can be accessed only via the pimpl pointer. While the total size of the
nested Impl struct is identical to the size of Person1, the size of the
Person2 struct is only 8 bytes (again, assuming a 64-bit machine).

NOTE
Via the Bridge design, you can reduce the size of a type, sometimes even significantly.
This can prove to be very valuable, for instance, if you want to use the type as an
alternative in std::variant (see “Guideline 17: Consider std::variant for Implementing
Visitor”).

So let me outline the benchmark: I will create two std::vectors of 25,000
persons, one for each of the two Person implementations. This number of
elements will make certain that we work beyond the size of the inner caches
of the underlying CPU (i.e., we will use a total of 3.2 MB with Clang 11.1
and 4.2 MB with GCC 11.1). All of these persons are given arbitrary names
and addresses and a year of birth between 1957 and 2004 (at the time of
writing, this would represent a reasonable range of ages of employees in an
organization). Then we will traverse both person vectors five thousand
times, and each time determine the oldest person with
std::min_element(). The result will be fairly uninteresting due to the
repetitive nature of the benchmark. After one hundred iterations, you’ll be
too bored to watch. The only thing that matters is seeing the performance
difference between accessing a data member directly (Person1) or
indirectly (Person2). Table 7-1 shows the performance results, normalized
to the performance of the Person1 implementation.



Table 7-1. Performance results for different Person
implementations (normalized performance)

Person implementation GCC 11.1 Clang 11.1

Person1 (no pimpl) 1.0 1.0

Person2 (complete Pimpl idiom) 1.1099 1.1312

It’s fairly obvious that in this particular benchmark, the Bridge
implementation incurs a pretty significant performance penalty: 11.0% for
GCC and 13.1% for Clang. This sounds like a lot! However, don’t take
these numbers too seriously: clearly, the result heavily depends on the
actual number of elements, the actual number and type of data members,
the system we’re running on, and the actual computation we perform in the
benchmark. If you change any of these details, the numbers will change as
well. Thus, these numbers only demonstrate that there is some, and
potentially even some more, overhead due to the indirect access to data
members.

Improving Performance with Partial Bridges
“OK, but this is an expected result, right? What should I learn from that?”
you ask. Well, I admit that this benchmark is fairly specific and does not
answer all questions. However, it does provide us with the opportunity to
actually use a Bridge to improve performance. If you take a closer look at
the implementation of Person1, you might realize that for the given
benchmark, the achievable performance is pretty limited: while the total
size of Person1 is 152 bytes (Clang 11.1) or 200 bytes (GCC 11.1),
respectively, we use only 4 bytes, i.e., a single int, out of the total data
structure. This proves to be rather wasteful and inefficient: since in cache-
based architectures memory is always loaded as cache lines, a lot of the
data that we load from memory is actually not used at all. In fact, almost all
of the data that we load from memory is not used at all: assuming a cache
line length of 64 bytes, we only use approximately 6% of the loaded data.



Hence, despite the fact that we determine the oldest person based on the
year of birth of all persons, which sounds like a compute-bound operation,
we are in fact completely memory bound: the machine simply cannot
deliver data fast enough, and the integer unit will idle most of the time.

This setting gives us the opportunity to improve the performance with a
Bridge. Let’s assume that we can distinguish between data that is used often
(such as forename, surname, and year_of_birth) and data that is used
infrequently (for instance, the postal address). Based on this distinction, we
now arrange the data members accordingly: all data members that are used
often are stored directly in the Person class. All data members that are used
infrequently are stored inside the Impl struct. This leads to the Person3
implementation:

//---- <Person3.h> ---------------- 
 
#include <memory> 
#include <string> 
 
class Person3 
{ 
 public: 
   explicit Person3( /*...various person arguments...*/ ); 
   ~Person3(); 
   // ... 
 
 private: 
   std::string forename_; 
   std::string surname_; 
   int year_of_birth_; 
 
   struct Impl; 
   std::unique_ptr<Pimpl> pimpl_; 
}; 
 
 
//---- <Person3.cpp> ---------------- 
 
#include <Person3.h> 
 
struct Person3::Impl 
{ 
   std::string address; 



   std::string city; 
   std::string country; 
   std::string zip; 
}; 
 
Person3::Person3( /*...various person arguments...*/ ) 
   : forename_{ /*...*/ } 
   , surname_{ /*...*/ } 
   , year_of_birth_{ /*...*/ } 
   , pimpl_{ std::make_unique<Impl>( /*...address-related arguments...*/ ) } 
{} 
 
Person3::~Person3() = default;

The total size of a Person3 instance is 64 bytes for Clang 11.1 (two 24-byte
std::strings, one integer, one pointer, and four padding bytes due to
alignment restrictions) and 80 bytes on GCC 11.1 (two 32-byte
std::strings, one integer, one pointer, and some padding). Thus, a
Person3 instance is only approximately half as big as a Person1 instance.
This difference in size is measurable: Table 7-2 shows the performance
result for all Person implementations, including Person3. Again, the
results are normalized to the performance of the Person1 implementation.

Table 7-2. Performance results for different Person
implementations (normalized performance)

Person implementation GCC 10.3 Clang 12.0

Person1 (no pimpl) 1.0 1.0

Person2 (complete Pimpl idiom) 1.1099 1.1312

Person3 (partial Pimpl idiom) 0.8597 0.9353

In comparison to the Person1 implementation, the performance for
Person3 is improved by 14.0% for GCC 11.1 and 6.5% for Clang 11.1.
And, as stated before, this is only because we reduced the size of the
Person3 implementation. “Wow, this was unexpected. I see, a Bridge is not
necessarily all bad for performance,” you say. Yes, indeed. Of course, it
always depends on the specific setup, but distinguishing between data



members that are used frequently and those that are used infrequently, and
reducing the size of a data structure by implementing a “partial” Bridge
may have a very positive impact on performance.

“The performance gain is huge, that’s great, but isn’t that running against
the intention of a Bridge?” you ask. Indeed, you realize that there is a
dichotomy between hiding implementation details and “inlining” data
members for the sake of performance. As always, it depends: you will have
to decide from case to case which aspect to favor. You hopefully also
realize that there is an entire range of solutions in between the two
extremes: it is not necessary to hide all data members behind a Bridge. In
the end, you are the one to find the optimum for a given problem.

In summary, while Bridges in general will very likely incur a performance
penalty, given the right circumstances, implementing a partial Bridge may
have a very positive effect on your performance. However, this is only one
of many aspects that influence performance. Therefore, you should always
check to see if a Bridge results in a performance bottleneck or if a partial
Bridge is addressing a performance issue. The best way to confirm this is
with a representative benchmark, based on the actual code and actual data
as much as possible.

GUIDELINE 29: BE AWARE OF BRIDGE PERFORMANCE
GAINS AND LOSSES

Keep in mind that Bridges can have a negative performance
impact.

Be aware that a partial Bridge can have a positive impact on
performance when separating frequently used data from
infrequently used data.

Always confirm performance bottlenecks or improvements by
representative benchmarks; do not rely on your gut feeling.
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Guideline 30: Apply Prototype for Abstract
Copy Operations
Imagine yourself sitting in a fancy Italian restaurant and studying the menu.
Oh my, they offer so many great things; the lasagna sounds great. But the
selection of pizza they offer is also amazing. So hard to choose…However,
your thoughts are interrupted as the waiter walks by carrying this
incredible-looking dish. Unfortunately, it’s not meant for you but for
someone at another table. Oh wow, the smell…At this moment, you know
that you no longer have to think about what you want to eat: you want the
same thing, no matter what it is. And so you order: “Ah, waiter, I’ll have
whatever they are having.”

The same problem may occur in your code. In C++ terms, what you are
asking the waiter for is a copy of the other person’s dish. Copying an object,
i.e., creating an exact replica of an instance, is a fundamentally important
operation in C++. So important that classes are, by default, equipped with a
copy constructor and a copy assignment operator—two of the so-called
special member functions.  However, when asking for a copy of the dish,
you are unfortunately not aware what dish it is. In C++ terms, all you have
is a pointer-to-base (say, a Dish*). And unfortunately, trying to copy via
Dish* with the copy constructor or copy assignment operator usually
doesn’t work. Still, you want an exact copy. The solution to this problem is
another classic GoF design pattern: the Prototype design pattern.

A Sheep-ish Example: Copying Animals
As an example, let’s consider the following Animal base class:

//---- <Animal.h> ---------------- 
 
class Animal 
{ 
 public: 
   virtual ~Animal() = default; 
   virtual void makeSound() const = 0; 
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   // ... more animal-specific functions 
};

Apart from the virtual destructor, which indicates that Animal is supposed
to be a base class, the class provides only the makeSound() function, which
deals with printing cute animal sounds. One example of such an animal is
the Sheep class:

//---- <Sheep.h> ---------------- 
 
#include <Animal.h> 
#include <string> 
 
class Sheep : public Animal 
{ 
 public: 
   explicit Sheep( std::string name ) : name_{ std::move(name) } {} 
 
   void makeSound() const override; 
   // ... more animal-specific functions 
 
 private: 
   std::string name_; 
}; 
 
 
//---- <Sheep.cpp> ---------------- 
 
#include <Sheep.h> 
#include <iostream> 
 
void Sheep::makeSound() const 
{ 
   std::cout << "baa\n"; 
}

In the main() function, we can now create a sheep and have it make
sounds:

#include <Sheep.h> 
#include <cstdlib> 
#include <memory> 
 
int main() 



{ 
   // Creating the one and only Dolly 
   std::unique_ptr<Animal> const dolly = std::make_unique<Sheep>( "Dolly" ); 
 
   // Triggers Dolly's beastly sound 
   dolly->makeSound(); 
 
   return EXIT_SUCCESS; 
}

Dolly is great, right? And so cute! In fact, she’s so much fun that we want
another Dolly. However, all we have is a pointer-to-base—an Animal*. We
can’t copy via the Sheep copy constructor or the copy assignment operator,
because we (technically) don’t even know that we are dealing with a Sheep.
It could be any kind of animal (e.g., dog, cat, sheep, etc.). And we don’t
want to copy just the Animal part of Sheep, as this is what we call slicing.

Oh my, I just realized that this may be a particularly bad example for
explaining the Prototype design pattern. Slicing animals. This sounds bad.
So let’s swiftly move on. Where were we? Ah yes, we want a copy of
Dolly, but we only have an Animal*. This is where the Prototype design
pattern comes into play.

The Prototype Design Pattern Explained
The Prototype design pattern is one of the five creational design patterns
collected by the Gang of Four. It is focused on providing an abstract way of
creating copies of some abstract entity.

THE PROTOTYPE DESIGN PATTERN
Intent: “Specify the kind of objects to create using a prototypical instance, and create
new objects by copying this prototype.”

Figure 7-5 shows the original UML formulation, taken from the GoF book.
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Figure 7-5. The UML representation of the Prototype design pattern

The Prototype design pattern is commonly implemented by a virtual
clone() function in the base class. Consider the updated Animal base
class:

//---- <Animal.h> ---------------- 
 



class Animal 
{ 
 public: 
   virtual ~Animal() = default; 
   virtual void makeSound() const = 0; 
   virtual std::unique_ptr<Animal> clone() const = 0; // Prototype design 
pattern 
};

Via this clone() function, anyone can ask for an abstract copy of the given
(prototype) animal, without having to know about any specific type of
animal (Dog, Cat, or Sheep). When the Animal base class is properly
assigned to the high level of your architecture, it follows the DIP (see
Figure 7-6).





Figure 7-6. Dependency graph for the Prototype design pattern

The clone() function is declared as a pure virtual function, which means
that deriving classes are required to implement it. However, deriving classes
cannot simply implement the function any way they want, but are expected
to return an exact copy of themselves (any other result would violate the
LSP; see “Guideline 6: Adhere to the Expected Behavior of Abstractions”).
This copy is commonly created dynamically by new and returned by a
pointer-to-base. This, of course, results not only in a pointer but also in the
need to explicitly delete the copy again. Since manual cleanup is
considered to be very bad practice in Modern C++, the pointer is returned
as the std::unique_ptr to Animal.

The Sheep class is updated accordingly:

//---- <Sheep.h> ---------------- 
 
#include <Animal.h> 
 
class Sheep : public Animal 
{ 
 public: 
   explicit Sheep( std::string name ) : name_{ std::move(name) } {} 
 
   void makeSound() const override; 
   std::unique_ptr<Animal> clone() const override;  // Prototype design 
pattern 
 
 private: 
   std::string name_; 
}; 
 
 
//---- <Sheep.cpp> ---------------- 
 
#include <Sheep.h> 
#include <iostream> 
 
void Sheep::makeSound() const 
{ 
   std::cout << "baa\n"; 
} 
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std::unique_ptr<Animal> Sheep::clone() const 
{ 
   return std::make_unique<Sheep>(*this);  // Copy-construct a sheep 
}

The Sheep class is now required to implement the clone() function and
return an exact copy of the Sheep: Inside its own clone() function, it
makes use of the std::make_unique() function and its own copy
constructor, which is always assumed to do the right thing, even if the
Sheep class changes in the future. This approach helps avoid unnecessary
duplication and thus follows the DRY principle (see “Guideline 2: Design
for Change”).

Note that the Sheep class neither deletes nor hides its copy constructor and
copy assignment operator. Hence, if you have a sheep, you can still copy
the sheep with the special member functions. That is perfectly OK: the
clone() merely adds one more way to create a copy—a way to perform
virtual copying.

With the clone() function in place, we can now create an exact copy of
Dolly. And we can do this so much easier than we could have back in 1996
when they cloned the first Dolly:

#include <Sheep.h> 
#include <cstdlib> 
#include <memory> 
 
int main() 
{ 
   std::unique_ptr<Animal> dolly = std::make_unique<Sheep>( "Dolly" ); 
   std::unique_ptr<Animal> dollyClone = dolly->clone(); 
 
   dolly->makeSound();       // Triggers the first Dolly's beastly sound 
   dollyClone->makeSound();  // The clone sounds just like Dolly 
 
   return EXIT_SUCCESS; 
}

Comparison Between Prototype and std::variant



The Prototype design pattern really is a classic, very OO-centric design
pattern, and since its publication in 1994, it is the go-to solution for
providing virtual copying. Because of this, the function name clone()
can almost be considered a keyword for identifying the Prototype design
pattern.

Because of the specific use case, there is no “modern” implementation
(except perhaps for the slight update to use std::unique_ptr instead of a
raw pointer). In comparison to other design patterns, there is also no value
semantics solution: as soon as we have a value, the most natural and
intuitive solution would be to build on the two copy operations (the copy
constructor and the copy assignment operator).

“Are you sure that there is no value semantics solution? Consider the
following example using std::variant:”

#include <cstdlib> 
#include <variant> 
 
class Dog {}; 
class Cat {}; 
class Sheep {}; 
 
int main() 
{ 
   std::variant<Dog,Cat,Sheep> animal1{ /* ... */ }; 
 
   auto animal2 = animal1;  // Creating a copy of the animal 
 
   return EXIT_SUCCESS; 
}

“Aren’t we performing an abstract copy operation in this case? And isn’t
this copy operation performed by the copy constructor? So isn’t this an
example of the Prototype design pattern but without the clone() function?”
No. Although it sounds like you have a compelling argument, this is not an
example of the Prototype design pattern. There is a very important
difference between our two examples: in your example, you have a closed
set of types (typical of the Visitor design pattern). The std::variant



animal1 contains a dog, a cat, or a sheep, but nothing else. Therefore, it is
possible to perform an explicit copy with the copy constructor. In my
example, I have an open set of types. In other words, I haven’t the slightest
clue what kind of animal I have to copy. It could be a dog, a cat, or a sheep,
but it could also be an elephant, a zebra, or a sloth. Anything is possible.
Therefore, I can’t build on the copy constructor but can only copy using a
virtual clone() function.

Analyzing the Shortcomings of the Prototype Design
Pattern
Yes, there is no value semantics solution for the Prototype design pattern,
but it’s a domestic beast from the realm of reference semantics. Hence,
whenever the need arises to apply the Prototype design pattern, we have to
live with the few drawbacks that come with it.

Arguably, the first disadvantage is the negative performance impact that
comes with the indirection due to pointers. However, since we only require
cloning if we have an inheritance hierarchy, it would be unfair to consider
this a drawback of Prototype itself. It is rather a consequence of the basic
setup of the problem. Since it’s also hard to imagine another
implementation without pointers and the associated indirections, it seems to
be an intrinsic property of the Prototype design pattern.

The second potential disadvantage is that, very often, the pattern is
implemented by dynamic memory. The allocation itself, and also the
possible resulting fragmented memory, causes further performance
deficiencies. Dynamic memory is not a requirement, however, and you will
see in “Guideline 33: Be Aware of the Optimization Potential of Type
Erasure” that in certain contexts, you can also build on in-class memory.
Still, this optimization applies to only a few special situations, and in most
cases, the pattern builds on dynamic memory.

In comparison to the ability to perform an abstract copy operation, the few
downsides are easily acceptable. However, as discussed in “Guideline 22:
Prefer Value Semantics over Reference Semantics”, our Animal hierarchy



would be simpler and more comprehensible if you could replace it with a
value semantics approach and therefore avoid having to apply the reference
semantics–based Prototype design pattern. Still, whenever you encounter
the need to create an abstract copy, the Prototype design pattern with a
corresponding clone() function is the right choice.

GUIDELINE 30: APPLY PROTOTYPE FOR ABSTRACT
COPY OPERATIONS

Apply the Prototype design pattern with the intent to create copies
of abstract entities.

Prefer building on the two copy operations for value types.

Keep in mind the performance drawbacks resulting from pointer
indirections and memory allocations.

Guideline 31: Use External Polymorphism for
Nonintrusive Runtime Polymorphism
In “Guideline 2: Design for Change”, we saw the enormous benefits of the
separation of concerns design principle. In “Guideline 19: Use Strategy to
Isolate How Things Are Done”, we used this power to extract the drawing
implementation details from a set of shapes with the Strategy design
pattern. However, although this has significantly reduced dependencies, and
despite the fact that we modernized the solution in “Guideline 23: Prefer a
Value-Based Implementation of Strategy and Command” with the help of
std::function, some disadvantages remained. In particular, the shape
classes were still forced to deal with the draw() operation, although for
coupling reasons, it is undesirable to deal with the implementation details.
Additionally, and most importantly, the Strategy approach proved to be a
little impractical for extracting multiple, polymorphic operations. To further
reduce coupling and extract polymorphic operations from our shapes, we



are now continuing this journey and taking the separation of concerns
principle to a completely new, potentially unfamiliar level: we are
separating the polymorphic behavior as a whole. For that purpose, we will
apply the External Polymorphism design pattern.

The External Polymorphism Design Pattern Explained
Let’s return to our example of drawing shapes and our latest version of our
Circle class from “Guideline 23: Prefer a Value-Based Implementation of
Strategy and Command”:

 
//---- <Shape.h> ---------------- 
 
class Shape 
{ 
 public: 
   virtual ~Shape() = default; 
 
   virtual void draw( /*some arguments*/ ) const = 0;   
}; 
 
 
//---- <Circle.h> ---------------- 
 
#include <Shape.h> 
#include <memory> 
#include <functional> 
#include <utility> 
 
class Circle : public Shape 
{ 
 public: 
   using DrawStrategy = std::function<void(Circle const&, /*...*/)>;   
 
   explicit Circle( double radius, DrawStrategy drawer ) 
      : radius_( radius ) 
      , drawer_( std::move(drawer) ) 
   { 
      /* Checking that the given radius is valid and that 
         the given 'std::function' instance is not empty */ 
   } 
 
   void draw( /*some arguments*/ ) const override   



   { 
      drawer_( *this, /*some arguments*/ ); 
   } 
 
   double radius() const { return radius_; } 
 
 private: 
   double radius_; 
   DrawStrategy drawer_; 
}; 

With the Strategy design pattern, we have overcome the initial strong
coupling to the implementation details of the draw() member function ( ).
We’ve also found a value semantics solution based on std::function ( ).
However, the draw() member function is still part of the public interface of
all classes deriving from the Shape base class, and all shapes inherit the
obligation to implement it ( ). This is a clear imperfection: arguably, the
drawing functionality should be separate, an isolated aspect of shapes, and
shapes in general should be oblivious to the fact that they can be drawn.
The fact that we have already extracted the implementation details
considerably strengthens this argument.

“Well, then, let’s just extract the draw() member function, right?” you
argue. And you’re right. Unfortunately, this appears to be a hard thing to do
at first sight. I hope you remember “Guideline 15: Design for the Addition
of Types or Operations”, where we came to the conclusion that you should
prefer an object-oriented solution when you primarily want to add types.
From this perspective, it appears as if we are stuck with the virtual draw()
function and the Shape base class, which represents the set of available
operations of all shapes, i.e., the list of requirements.

There is a solution, though. A pretty astonishing one: we can extract the
complete polymorphic behavior with the External Polymorphism design
pattern. The pattern was introduced in a paper by Chris Cleeland, Douglas
C. Schmidt, and Timothy H. Harrison in 1996.  Its intent is to enable the
polymorphic treatment of nonpolymorphic types (types without a single
virtual function).
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THE EXTERNAL POLYMORPHISM DESIGN
PATTERN

Intent: “Allow C++ classes unrelated by inheritance and/or having no virtual methods to
be treated polymorphically. These unrelated classes can be treated in a common manner
by software that uses them.”

Figure 7-7 gives a first impression of how the design pattern achieves this
goal. One of the first striking details is that there is no Shape base class
anymore. In the External Polymorphism design pattern, the different kinds
of shapes (Circle, Square, etc.) are assumed to be plain, nonpolymorphic
types. Also, the shapes are not expected to know anything about drawing.
Instead of requiring the shapes to inherit from a Shape base class, the
design pattern introduces a separate inheritance hierarchy in the form of the
ShapeConcept and ShapeModel classes. This external hierarchy introduces
the polymorphic behavior for the shapes by introducing all the operations
and requirements that are expected for shapes.



Figure 7-7. The UML representation of the External Polymorphism design pattern

In our simple example, the polymorphic behavior consists of only the
draw() function. However, the set of requirements could, of course, be
larger (e.g., rotate(), serialize(), etc.). This set of virtual functions has
been moved into the abstract ShapeConcept class, which now takes the
place of the previous Shape base class. The major difference is that
concrete shapes are not required to know about ShapeConcept and, in
particular, are not expected to inherit from it. Thus, the shapes are
completely decoupled from the set of virtual functions. The only class
inheriting from ShapeConcept is the ShapeModel class template. This class
is instantiated for a specific kind of shape (Circle, Square, etc.) and acts
as a wrapper for it. However, ShapeModel does not implement the logic of



the virtual functions itself but delegates the request to the desired
implementation.

“Wow, that’s amazing! I get the point: this external hierarchy extracts the
whole set of virtual functions and, by that, the entire polymorphic behavior
of the shapes.” Yes, exactly. Again, this is an example of separation of
concerns and the SRP. In this case, the complete polymorphic behavior is
identified as a variation point and extracted from the shapes. And again,
SRP acts as an enabler for the OCP: with the ShapeModel class template,
you can easily add any new, nonpolymorphic shape type into the
ShapeConcept hierarchy. This works as long as the new type fulfills all of
the required operations.

“I’m really impressed. However, I’m not certain what you mean by
fulfilling all of the required operations. Could you please elaborate?”
Absolutely! I think the benefits will become clear when I show you a
concrete code example. So let’s refactor the complete drawing of the shapes
example with the External Polymorphism design pattern.

Drawing of Shapes Revisited
Let’s start with the Circle and Square classes:

//---- <Circle.h> ---------------- 
 
class Circle 
{ 
 public: 
   explicit Circle( double radius ) 
      : radius_( radius ) 
   { 
      /* Checking that the given radius is valid */ 
   } 
 
   double radius() const { return radius_; } 
   /* Several more getters and circle-specific utility functions */ 
 
 private: 
   double radius_; 
   /* Several more data members */ 
}; 



 
 
//---- <Square.h> ---------------- 
 
class Square 
{ 
 public: 
   explicit Square( double side ) 
      : side_( side ) 
   { 
      /* Checking that the given side length is valid */ 
   } 
 
   double side() const { return side_; } 
   /* Several more getters and square-specific utility functions */ 
 
 private: 
   double side_; 
   /* Several more data members */ 
};

Both classes have been reduced to basic geometric entities. Both are
completely nonpolymorphic, i.e., there is no base class anymore and not a
single virtual function. Most importantly, however, the two classes are
completely oblivious to any kind of operation, like drawing, rotating,
serialization, etc., that could introduce an artificial dependency.

Instead, all of this functionality is introduced in the ShapeConcept base
class and implemented by the ShapeModel class template:

 
//---- <Shape.h> ---------------- 
 
#include <functional> 
#include <stdexcept> 
#include <utility> 
 
class ShapeConcept 
{ 
 public: 
   virtual ~ShapeConcept() = default; 
 
   virtual void draw() const = 0;   
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   // ... Potentially more polymorphic operations 
}; 
 
 
template< typename ShapeT > 
class ShapeModel : public ShapeConcept   
{ 
 public: 
   using DrawStrategy = std::function<void(ShapeT const&)>;   
 
   explicit ShapeModel( ShapeT shape, DrawStrategy drawer ) 
      : shape_{ std::move(shape) } 
      , drawer_{ std::move(drawer) } 
   { 
      /* Checking that the given 'std::function' is not empty */ 
   } 
 
   void draw() const override { drawer_(shape_); }   
 
   // ... Potentially more polymorphic operations 
 
 private: 
   ShapeT shape_;   
   DrawStrategy drawer_;   
}; 

The ShapeConcept class introduces a pure virtual draw() member function
( ). In our example, this one virtual function represents the entire set of
requirements for shapes. Despite the small size of the set, the
ShapeConcept class represents a classic abstraction in the sense of the LSP
(see “Guideline 6: Adhere to the Expected Behavior of Abstractions”). This
abstraction is implemented within the Shape Model class template ( ). It is
noteworthy that instantiations of ShapeModel are the only classes to ever
inherit from ShapeConcept; no other class is expected to enter in this
relationship. The ShapeModel class template will be instantiated for every
desired type of shape, i.e., the ShapeT template parameter is a stand-in for
types like Circle, Square, etc. Note that ShapeModel stores an instance of
the corresponding shape ( ) (composition, not inheritance; remember
“Guideline 20: Favor Composition over Inheritance”). It acts as a wrapper
that augments the specific shape type with the required polymorphic
behavior (in our case, the draw() function).



Since ShapeModel implements the ShapeConcept abstraction, it needs to
provide an implementation for the draw() function. However, it is not the
responsibility of the ShapeModel to implement the draw() details itself.
Instead, it should forward a drawing request to the actual implementation.
For that purpose, we can again reach for the Strategy design pattern and the
abstracting power of std::function ( ). This choice nicely decouples
both the implementation details of drawing and all the necessary drawing
data (colors, textures, transparency, etc.), which can be stored inside the
callable. Hence, ShapeModel stores an instance of DrawStrategy ( ) and
uses that strategy whenever the draw() function is triggered ( ).

The Strategy design pattern and the std::function are not your only
choices, though. Within the ShapeModel class template, you have complete
flexibility to implement drawing as you see fit. In other words, within the
ShapeModel::draw() function, you define the actual requirements for the
specific shape types. For instance, you could alternatively forward to a
member function of the ShapeT shape (which does not have to be named
draw()!), or you could forward to a free function of the shape. You just
need to make sure that you do not impose artificial requirements on either
the ShapeModel or the ShapeConcept abstraction. Either way, any type
used to instantiate ShapeModel must fulfill these requirements to make the
code compile.

NOTE
From a design perspective, building on a member function would introduce a more
restrictive requirement on the given type, and therefore introduce stronger coupling.
Building on a free function, however, would enable you to invert dependencies, similar
to the use of the Strategy design pattern (see “Guideline 9: Pay Attention to the
Ownership of Abstractions”). If you prefer the free function approach, just remember
“Guideline 8: Understand the Semantic Requirements of Overload Sets”.

“Isn’t ShapeModel some kind of generalization of the initial Circle and
Square classes? The ones that were also holding the std::function
instance?” Yes, this is an excellent realization. Indeed, you could say that



ShapeModel is kind of a templated version of the initial shape classes. For
this reason it helps to reduce the boilerplate code necessary to introduce the
Strategy behavior and improves the implementation with respect to the
DRY principle (see “Guideline 2: Design for Change”). However, you gain
a lot more: for instance, since ShapeModel is already a class template, you
can easily switch from the current runtime Strategy implementation to a
compile-time Strategy implementation (i.e., policy-based design; see
“Guideline 19: Use Strategy to Isolate How Things Are Done”):

 
template< typename ShapeT 
        , typename DrawStrategy >   
class ShapeModel : public ShapeConcept 
{ 
 public: 
   explicit ShapeModel( ShapeT shape, DrawStrategy drawer ) 
      : shape_{ std::move(shape) } 
      , drawer_{ std::move(drawer) } 
   {} 
 
   void draw() const override { drawer_(shape_); } 
 
 private: 
   ShapeT shape_; 
   DrawStrategy drawer_; 
}; 

Instead of building on std::function, you can pass an additional template
parameter to the ShapeModel class template, which represents the drawing
Strategy ( ). This template parameter could even have a default:

struct DefaultDrawer 
{ 
   template< typename T > 
   void operator()( T const& obj ) const { 
      draw(obj); 
   } 
}; 
 
template< typename ShapeT 
        , typename DrawStrategy = DefaultDrawer > 
class ShapeModel : public ShapeConcept 



{ 
 public: 
   explicit ShapeModel( ShapeT shape, DrawStrategy drawer = DefaultDrawer{} ) 
   // ... as before 
};

In comparison to applying policy-based design to the Circle and Square
classes directly, the compile-time approach in this context holds only
benefits and comes with no disadvantages. First, you gain performance due
to fewer runtime indirections (the expected performance disadvantage of
std::function). Second, you do not artificially augment Circle, Square,
and all the other shape classes with a template argument to configure the
drawing behavior. You now only do this for the wrapper, which augments
the drawing behavior, and you do this in exactly one place (which again
very nicely adheres to the DRY principle). Third, you do not force
additional code into a header file by turning a regular class into a class
template. Only the slim ShapeModel class, which is already a class
template, needs to reside in a header file. Therefore, you avoid creating
additional dependencies.

“Wow, this design pattern is getting better and better. This seriously is a
very compelling combination of inheritance and templates!” Yes, I
completely agree. This is an exemplar for combining runtime and compile-
time polymorphism: the ShapeConcept base class provides the abstraction
for all possible types, while the deriving ShapeModel class template
provides the code generation for shape-specific code. Most impressively,
however, this combination comes with huge benefits for the reduction of
dependencies.

Take a look at Figure 7-8, which shows the dependency graph for our
implementation of the External Polymorphism design pattern. On the
highest level of our architecture are the ShapeConcept and ShapeModel
classes, which together represent the abstraction of shapes. Circle and
Square are possible implementations of this abstraction but are still
completely independent: no inheritance relationship, no composition,
nothing. Only the instantiation of the ShapeModel class template for a
specific kind of shape and a specific DrawStrategy implementation brings



all aspects together. However, specifically note that all of this happens on
the lowest level of our architecture: the template code is generated at the
point where all dependencies are known and “injected” into the right level
of our architecture. Thus, we truly have a proper architecture: all
dependency connections run toward the higher levels with an almost
automatic adherence to the DIP.





Figure 7-8. Dependency graph for the External Polymorphism design pattern

With this functionality in place, we are now free to implement any desired
drawing behavior. For instance, we are free to use OpenGL again:

 
//---- <OpenGLDrawStrategy.h> ---------------- 
 
#include <Circle> 
#include <Square> 
#include /* OpenGL graphics library headers */ 
 
class OpenGLDrawStrategy 
{ 
 public: 
   explicit OpenGLDrawStrategy( /* Drawing related arguments */ ); 
 
   void operator()( Circle const& circle ) const;   
   void operator()( Square const& square ) const;   
 
 private: 
   /* Drawing related data members, e.g. colors, textures, ... */ 
}; 

Since OpenGLDrawStrategy does not have to inherit from any base class,
you are free to implement it as you see fit. If you want to, you can combine
the implementation of drawing circles and drawing squares into one class.
This does not create any artificial dependencies, similar to what we
experienced in “Guideline 19: Use Strategy to Isolate How Things Are
Done”, where we combined these functionalities into the base class.

NOTE
Note that combining drawing circles and squares in one class represents the same thing
as inheriting the class from two Strategy base classes. On that level of the architecture, it
does not create any artificial dependencies and is merely an implementation detail.

The only convention you need to follow is to provide a function call
operator for Circle ( ) and Square ( ), as this is the defined calling



convention in the ShapeModel class template.

In the main() function, we put all of the details together:

 
#include <Circle.h> 
#include <Square.h> 
#include <Shape.h> 
#include <OpenGLDrawStrategy.h> 
#include <memory> 
#include <vector> 
 
int main() 
{ 
   using Shapes = std::vector<std::unique_ptr<ShapeConcept>>;   
 
   using CircleModel = ShapeModel<Circle,OpenGLDrawStrategy>;   
   using SquareModel = ShapeModel<Square,OpenGLDrawStrategy>;   
 
   Shapes shapes{}; 
 
   // Creating some shapes, each one 
   //   equipped with an OpenGL drawing strategy 
   shapes.emplace_back( 
      std::make_unique<CircleModel>( 
         Circle{2.3}, OpenGLDrawStrategy(/*...red...*/) ) ); 
   shapes.emplace_back( 
      std::make_unique<SquareModel>( 
         Square{1.2}, OpenGLDrawStrategy(/*...green...*/) ) ); 
   shapes.emplace_back( 
      std::make_unique<CircleModel>( 
         Circle{4.1}, OpenGLDrawStrategy(/*...blue...*/) ) ); 
 
   // Drawing all shapes 
   for( auto const& shape : shapes ) 
   { 
      shape->draw(); 
   } 
 
   return EXIT_SUCCESS; 
} 

Again, we first create an empty vector of shapes (this time a vector of
std::unique_ptrs of ShapeConcept) ( ) before we add three shapes.
Within the calls to std::make_unique(), we instantiate the ShapeModel



class for Circle and Square (called CircleModel ( ) and SquareModel (
) to improve readability) and pass the necessary details (the concrete shape
and the corresponding OpenGLDrawStrategy). After that, we are able to
draw all shapes in the desired way.

Altogether, this approach gives you a lot of awesome advantages:

Due to separating concerns and extracting the polymorphic behavior
from the shape types, you remove all dependencies on graphics
libraries, etc. This creates a very loose coupling and beautifully
adheres to the SRP.

The shape types become simpler and nonpolymorphic.

You’re able to easily add new kinds of shapes. These might even be
third-party types, as you are no longer required to intrusively inherit
from a Shape base class or create an Adapter (see “Guideline 24: Use
Adapters to Standardize Interfaces”). Thus, you perfectly adhere to the
OCP.

You significantly reduce the usual inheritance-related boilerplate code
and implement it in exactly one place, which very nicely follows the
DRY principle.

Since the ShapeConcept and ShapeModel class belong together and
together form the abstraction, it’s much easier to adhere to the DIP.

By reducing the number of indirections by exploiting the available
class template, you can improve performance.

There is one more advantage, which I consider to be the most impressive
benefit of the External Polymorphism design pattern: you can,
nonintrusively, equip any type with polymorphic behavior. Really, any type,
even something as simple as an int. To demonstrate this, let’s take a look at
the following code snippet, which assumes that ShapeModel is equipped
with a DefaultDrawer, which expects the wrapped type to provide a free
draw() function:



 
int draw( int i )   
{ 
   // ... drawing an int, for instance by printing it to the command line 
} 
 
int main() 
{ 
   auto shape = std::make_unique<ShapeModel<int>>( 42 );   
 
   shape->draw();  // Drawing the integer   
 
   return EXIT_SUCCESS; 
} 

We first provide a free draw() function for an int ( ). In the main()
function, we now instantiate a ShapeModel for int ( ). This line will
compile, as the int satisfies all the requirements: it provides a free draw()
function. Therefore, in the next line we can “draw” the integer ( ).

“Do you really want me to do something like this?” you ask, frowning. No,
I do not want you to do this at home. Please consider this a technical
demonstration, not a recommendation. But nonetheless, this is impressive:
we have just nonintrusively equipped an int with polymorphic behavior.
Really impressive indeed!

Comparison Between External Polymorphism and
Adapter
“Since you just mentioned the Adapter design pattern, I feel like it’s very
similar to the External Polymorphism design pattern. What is the difference
between the two?” Excellent point! You address an issue that the original
paper by Cleeland, Schmidt, and Harrison also addresses. Yes, these two
design patterns are indeed pretty similar, yet there is a very distinctive
difference: while the Adapter design pattern is focused on standardizing
interfaces and adapts a type or function to an existing interface, the External
Polymorphism design pattern creates a new, external hierarchy to abstract
from a set of related, nonpolymorphic types. So if you adapt something to
an existing interface, you (most probably) apply the Adapter design pattern.



If, however, you create a new abstraction for the purpose of treating a set of
existing types polymorphically, then you (most likely) apply the External
Polymorphism design pattern.

Analyzing the Shortcomings of the External
Polymorphism Design Pattern
“I get the feeling that you like the External Polymorphism design pattern a
lot, am I right?” you wonder. Oh yes, indeed, I’m amazed by this design
pattern. From my point of view, this design pattern is key to loose coupling,
and it’s a shame that it is not more widely known. Perhaps this is because
many developers have not fully embraced the separation of concerns and
tend to put everything into only a few classes. Still, despite my enthusiasm,
I do not want to create the impression that everything about External
Polymorphism is perfect. No, as stated many times before, every design has
its advantages and its disadvantages. The same is true for the External
Polymorphism design pattern.

There is only one major disadvantage, though: the External Polymorphism
design pattern does not really fulfill the expectations of a clean and simple
solution, and definitely not the expectations of a value semantics–based
solution. It does not help to reduce pointers, does not reduce the number of
manual allocations, does not lower the number of inheritance hierarchies,
and does not help to simplify user code. On the contrary, since it is
necessary to explicitly instantiate the ShapeModel class, user code has to be
rated as slightly more complicated. However, if you consider this a severe
drawback, or if you’re thinking something along the lines of “This should
be automated somehow,” I have very good news for you: in “Guideline 32:
Consider Replacing Inheritance Hierarchies with Type Erasure”, we will
take a look at the modern C++ solution that will elegantly resolve this issue.

Apart from that, I have only two reminders that you should consider as
words of caution. The first point to keep in mind is that the application of
External Polymorphism does not save you from thinking about a proper
abstraction. The ShapeConcept base class is just as much subject to the ISP
as any other base class. For instance, we could easily apply External



Polymorphism to the Document example from“Guideline 3: Separate
Interfaces to Avoid Artificial Coupling”:

class DocumentConcept 
{ 
 public: 
   // ... 
   virtual ~Document() = default; 
 
   virtual void exportToJSON( /*...*/ ) const = 0; 
   virtual void serialize( ByteStream& bs, /*...*/ ) const = 0; 
   // ... 
}; 
 
template< typename DocumentT > 
class DocumentModel 
{ 
 public: 
   // ... 
   void exportToJSON( /*...*/ ) const override; 
   void serialize( ByteStream& bs, /*...*/ ) const override; 
   // ... 
 
 private: 
   DocumentT document_; 
};

The DocumentConcept class takes the role of the ShapeConcept base class,
while the DocumentModel class template takes the role of the ShapeModel
class template. However, this externalized hierarchy exhibits the same
problem as the original hierarchy: for all code requiring only the
exportToJSON() functionality, it introduces the artificial dependency on
ByteStream:

void exportDocument( DocumentConcept const& doc ) 
{ 
   // ... 
   doc.exportToJSON( /* pass necessary arguments */ ); 
   // ... 
}



The correct approach would be to separate concerns by segregating the
interface into the two orthogonal aspects of JSON export and serialization:

class JSONExportable 
{ 
 public: 
   // ... 
   virtual ~JSONExportable() = default; 
 
   virtual void exportToJSON( /*...*/ ) const = 0; 
   // ... 
}; 
 
class Serializable 
{ 
 public: 
   // ... 
   virtual ~Serializable() = default; 
 
   virtual void serialize( ByteStream& bs, /*...*/ ) const = 0; 
   // ... 
}; 
 
template< typename DocumentT > 
class DocumentModel 
   : public JSONExportable 
   , public Serializable 
{ 
 public: 
   // ... 
   void exportToJSON( /*...*/ ) const override; 
   void serialize( ByteStream& bs, /*...*/ ) const override; 
   // ... 
 
 private: 
   DocumentT document_; 
};

Any function exclusively interested in JSON export can now specifically
ask for that functionality:

void exportDocument( JSONExportable const& exportable ) 
{ 
   // ... 
   exportable.exportToJSON( /* pass necessary arguments */ ); 



   // ... 
}

Second, be aware that External Polymorphism, just as the Adapter design
pattern, makes it very easy to wrap types that do not fulfill the semantic
expectations. Similar to the duck typing example in “Guideline 24: Use
Adapters to Standardize Interfaces”, where we pretended that a turkey is a
duck, we also pretended that an int is a shape. All we had to do to fulfill
the requirements was provide a free draw() function. Easy. Perhaps too
easy. Therefore, keep in mind that the classes used to instantiate the
ShapeModel class template (e.g., Circle, Square, etc.) have to adhere to
the LSP. After all, the ShapeModel class acts just as a wrapper and passes
on the requirements defined by the ShapeConcept class to the concrete
shapes. Thus, the concrete shapes take the responsibility to properly
implement the expected behavior (see “Guideline 6: Adhere to the Expected
Behavior of Abstractions”). Any failure to completely fulfill the
expectations may lead to (potentially subtle) misbehavior. Unfortunately,
because these requirements have been externalized, it is a little harder to
communicate the expected behavior.

However, in the int example it was maybe our own fault to be honest.
Perhaps the ShapeConcept base class doesn’t really represent an
abstraction of a shape. It is reasonable to argue that shapes are more than
just drawing. Perhaps we should have named the abstraction Drawable, and
the LSP would have been satisfied. Perhaps not. So in the end, it all comes
down to the choice of abstraction. Which brings us back to the title of
Chapter 2: “The Art of Building Abstractions.” No, it isn’t easy, but perhaps
these examples demonstrate that it is important. Very important. It may be
the essence of software design.

In summary, although the External Polymorphism design pattern may not
satisfy your expectation in a simple or value-based solution, it must be
considered a very important step toward decoupling software entities. From
the perspective of reducing dependencies, this design pattern appears to be
a key ingredient to loose coupling, and is a marvelous example of the power
of separation of concerns. It also gives us one key insight: using this design



pattern, you can nonintrusively equip any type with polymorphic behavior,
e.g., virtual functions, so any type can behave polymorphically, even a
simple value type such as int. This realization opens up a completely new,
exciting design space, which we will continue to explore in the next
chapter.

GUIDELINE 31: USE EXTERNAL POLYMORPHISM FOR
NONINTRUSIVE RUNTIME POLYMORPHISM

Apply the External Polymorphism design pattern with the intent to
enable the polymorphic treatment of nonpolymorphic types.

Consider the External Polymorphism design pattern as a key
player to achieve loose coupling.

Exploit the design flexibilities of the externalized inheritance
hierarchy.

Understand the differences between External Polymorphism and
Adapter.

Prefer nonintrusive solutions to intrusive solutions.

1  ABI stability is an important and often debated topic in the C++ community, in particular just
before the release of C++20. If this sounds interesting to you, I recommend the CppCast
interviews with Titus Winters and Marshall Clow to get an impression of both sides.

2  Remember that std::unique_ptr cannot be copied. Thus, switching from ElectricEngine
to std::unique_ptr<ElectricEngine> renders your class noncopyable. To preserve copy
semantics, you have to implement the copy operations manually. When doing this, please keep
in mind that the copy operations disable the move operations. In other words, prefer to stick to
the Rule of 5.

3  Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software.

4  Usually, the move operations are expected to be noexcept. This is explained by Core
Guideline C.66. However, sometimes this might not be possible, for instance, under the
assumption that some std::unique_ptr data member is never nullptr.

https://oreil.ly/8rgkm
https://oreil.ly/R1XYJ
https://oreil.ly/fzS3f
https://oreil.ly/luKRb


5  See “Guideline 11: Understand the Purpose of Design Patterns” for my statement about the
structural similarity of design patterns.

6  If this dynamic allocation turns out to be a severe impediment or a reason not to use a Bridge,
you might look into the Fast-Pimpl idiom, which is based on in-class memory. For that, you
might refer to Herb Sutter’s first book: Exceptional C++: 47 Engineering Puzzles,
Programming Problems, and Exception-Safety Solutions (Pearson).

7  The difference in size of Person1 is easily explained by the different sizes of std::string
implementations for different compilers. Since compiler vendors optimize std::string for
different use cases, on Clang 11.1, a single std::string occupies 24 bytes, and on GCC 11.1,
it occupies 32 bytes. Therefore, the total size of one instance of Person1 is 152 bytes with
Clang 11.1 (six 24-byte std::strings, plus one 4-byte int, plus 4 bytes of padding) or 200
bytes with GCC 11.1 (six 32-byte std::strings, plus one 4-byte int, plus 4 bytes of
padding).

8  You may be aware that we are still far away from optimal performance. To move in the
direction of optimal performance, we could arrange the data based on how it is used. For this
benchmark, this would mean to store all year_of_birth values from all persons in one big
static vector of integers. This kind of data arrangement would move us in the direction of data-
oriented design. For more information on this paradigm, see for instance Richard Fabian’s
book on the subject, Data-Oriented Design: Software Engineering for Limited Resources and
Short Schedules.

9  The rules when a compiler will generate these two copy operations are beyond the scope of
this book, but here is a short summary: every class has these two operations, meaning they
always exist. They have been generated by the compiler, or you have explicitly declared or
even defined them (potentially in the private section of the class or via =delete), or they are
implicitly deleted. Note that deleting these functions does not mean that they’re gone, but
=delete serves as a definition. As these two functions are always part of a class, they will
always participate in overload resolution.

10  Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software.

11  Core Guideline R.3 clearly states that a raw pointer (a T*) is nonowning. From this
perspective, it would even be incorrect to return a raw pointer-to-base. However, this means
that you cannot directly exploit the language feature of covariant return types anymore. If this
is desirable or required, a common solution would be to follow the Template Method design
pattern and split the clone() function into a private virtual function returning a raw
pointer, and a public non-virtual function calling the private function and returning
std::unique_ptr.

12  See “Guideline 2: Design for Change” for a similar example with different kinds of
documents.

13  Chris Cleeland, Douglas C. Schmidt, and Timothy H. Harrison, “External Polymorphism—
An Object Structural Pattern for Transparently Extending C++ Concrete Data Types,”
Proceedings of the 3rd Pattern Languages of Programming Conference, Allerton Park, Illinois,
September 4–6, 1996.

https://oreil.ly/YeCHE


14  The names Concept and Model are chosen based on the common terminology in the Type
Erasure design pattern, where External Polymorphism plays a major role; see Chapter 8.



Chapter 8. The Type Erasure
Design Pattern

Separation of concerns and value semantics are two of the essential
takeaways from this book that I have mentioned a couple of times by now.
In this chapter, these two are beautifully combined into one of the most
interesting modern C++ design patterns: Type Erasure. Since this pattern
can be considered one of the hottest irons in the fire, in this chapter I will
give you a very thorough, in-depth introduction to all aspects of Type
Erasure. This, of course, includes all design-specific aspects and a lot of
specifics about implementation details.

In “Guideline 32: Consider Replacing Inheritance Hierarchies with Type
Erasure”, I will introduce you to Type Erasure and give you an idea why
this design pattern is such a great combination of dependency reduction and
value semantics. I will also give you a walkthrough of a basic, owning Type
Erasure implementation.

“Guideline 33: Be Aware of the Optimization Potential of Type Erasure” is
an exception: despite the fact that in this book I primarily focus on
dependencies and design aspects, in this one guideline I will entirely focus
on performance-related implementation details. I will show you how to
apply the Small Buffer Optimization (SBO) and how to implement a manual
virtual dispatch to speed up your Type Erasure implementation.

In “Guideline 34: Be Aware of the Setup Costs of Owning Type Erasure
Wrappers”, we will investigate the setup costs of the owning Type Erasure
implementation. We will find that there is a cost associated with value
semantics that sometimes we may not be willing to pay. For this reason, we
dare to take a step into the realm of reference semantics and implement a
form of nonowning Type Erasure.



Guideline 32: Consider Replacing
Inheritance Hierarchies with Type Erasure
There are a couple of recurring pieces of advice throughout this book:

Minimize dependencies.

Separate concerns.

Prefer composition to inheritance.

Prefer nonintrusive solutions.

Prefer value semantics over reference semantics.

Used on their own, all of these have very positive effects on the quality of
your code. In combination, however, these guidelines prove to be so much
better. This is what you have experienced in our discussion about the
External Polymorphism design pattern in “Guideline 31: Use External
Polymorphism for Nonintrusive Runtime Polymorphism”. Extracting the
polymorphic behavior turned out to be extremely powerful and unlocked an
unprecedented level of loose coupling. Still, probably disappointingly, the
demonstrated implementation of External Polymorphism did not strike you
as a very modern way of solving things. Instead of following the advice to
prefer value semantics, the implementation was firmly built on reference
semantics: many pointers, many manual allocations, and manual lifetime
management.  Hence, the missing detail you’re waiting for is a value
semantics–based implementation of the External Polymorphism design
pattern. And I will not keep you waiting anymore: the resulting solution is
commonly called Type Erasure.

The History of Type Erasure
Before I give you a detailed introduction, let’s quickly talk about the history
of Type Erasure. “Come on,” you argue. “Is this really necessary? I’m
dying to finally see how this stuff works.” Well, I promise to keep it short.
But yes, I feel this is a necessary detail of this discussion for two reasons.

1

2



First, to demonstrate that we as a community, aside from the circle of the
most experienced C++ experts, may have overlooked and ignored this
technique for too long. And second, to give some well-deserved credit to
the inventor of the technique.

The Type Erasure design pattern is very often attributed to one of the first
and therefore most famous presentations of this technique. At the
GoingNative 2013 conference, Sean Parent gave a talk called “Inheritance
Is the Base Class of Evil.”  recapped his experiences with the development
of Photoshop and talked about the dangers and disadvantages of
inheritance-based implementations. However, he also presented a solution
to the inheritance problem, which later came to be known as Type Erasure.

Despite Sean’s talk being one of the first recorded, and for that reason
probably the most well-known resource about Type Erasure, the technique
was used long before that. For instance, Type Erasure was used in several
places in the Boost libraries, for example, by Douglas Gregor for
boost::function. Still, to my best knowledge, the technique was first
discussed in a paper by Kevlin Henney in the July-August 2000 edition of
the C++ Report.  In this paper, Kevlin demonstrated Type Erasure with a
code example that later evolved into what we today know as C++17’s
std::any. Most importantly, he was the first to elegantly combine several
design patterns to form a value semantics–based implementation around a
collection of unrelated, nonpolymorphic types.

Since then, a lot of common types have acquired the technique to provide
value types for various applications. Some of these types have even found
their way into the Standard Library. For instance, we have already seen
std::function, which represents a value-based abstraction of a callable.
I’ve already mentioned std::any, which represents an abstract container-
like value for virtually anything (hence the name) but without exposing any
functionality:

#include <any> 
#include <cstdlib> 
#include <string> 
using namespace std::string_literals; 

3

4

5
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int main() 
{ 
   std::any a;          // Creating an empty 'any' 
   a = 1;               // Storing an 'int' inside the 'any'; 
   a = "some string"s;  // Replacing the 'int' with a 'std::string' 
 
   // There is nothing we can do with the 'any' except for getting the value 
back 
   std::string s = std::any_cast<std::string>( a ); 
 
   return EXIT_SUCCESS; 
}

And then there is std::shared_ptr, which uses Type Erasure to store the
assigned deleter:

#include <cstdlib> 
#include <memory> 
 
int main() 
{ 
   { 
      // Creating a 'std::shared_ptr' with a custom deleter 
      //   Note that the deleter is not part of the type! 
      std::shared_ptr<int> s{ new int{42}, [](int* ptr){ delete ptr; } }; 
   } 
   // The 'std::shared_ptr' is destroyed at the end of the scope, 
   //   deleting the 'int' by means of the custom deleter. 
 
   return EXIT_SUCCESS; 
}

“It appears to be simpler to just provide a second template parameter for the
deleter as std::unique_ptr does. Why isn’t std::shared_ptr
implemented in the same way?” you inquire. Well, the designs of
std::shared_ptr and std::unique_ptr are different for very good
reasons. The philosophy of std::unique_ptr is to represent nothing but
the simplest possible wrapper around a raw pointer: it should be as fast as a
raw pointer, and it should have the same size as a raw pointer. For that
reason, it is not desirable to store the deleter alongside the managed pointer.
Consequently, std::unique_ptr is designed such that for stateless



deleters, any size overhead can be avoided. However, unfortunately, this
second template parameter is easily overlooked and causes artificial
restrictions:

// This function takes only unique_ptrs that use the default deleter, 
//   and thus is artificially restricted 
template< typename T > 
void func1( std::unique_ptr<T> ptr ); 
 
// This function does not care about the way the resource is cleaned up, 
//   and thus is truly generic 
template< typename T, typename D > 
void func2( std::unique_ptr<T,D> ptr );

This kind of coupling is avoided in the design of std::shared_ptr. Since
std::shared_ptr has to store many more data items in its so-called
control block (that includes the reference count, the weak count, etc.), it has
the opportunity to use Type Erasure to literally erase the type of the deleter,
removing any kind of possible dependency.

The Type Erasure Design Pattern Explained
“Wow, that truly sounds intriguing. This makes me even more excited to
learn about Type Erasure.” OK then, here we go. However, please don’t
expect any magic or revolutionary new ideas. Type Erasure is nothing but a
compound design pattern, meaning that it is a very clever and elegant
combination of three other design patterns. The three design patterns of
choice are External Polymorphism (the key ingredient for achieving the
decoupling effect and the nonintrusive nature of Type Erasure; see
“Guideline 31: Use External Polymorphism for Nonintrusive Runtime
Polymorphism”), Bridge (the key to creating a value semantics–based
implementation; see “Guideline 28: Build Bridges to Remove Physical
Dependencies”), and (optionally) Prototype (required to deal with the copy
semantics of the resulting values; see “Guideline 30: Apply Prototype for
Abstract Copy Operations”). These three design patterns form the core of
Type Erasure, but of course, keep in mind that different interpretations and
implementations exist, mainly to adapt to specific contexts. The point of



combining these three design patterns is to create a wrapper type, which
represents a loosely coupled, nonintrusive abstraction.

THE TYPE ERASURE COMPOUND DESIGN
PATTERN

Intent: “Provide a value-based, non-intrusive abstraction for an extendable set of
unrelated, potentially non-polymorphic types with the same semantic behavior.”

The purpose of this formulation is to be as short as possible, and as precise
as necessary. However, every detail of this intent carries meaning. Thus, it
may be helpful to elaborate:

Value-based

The intent of Type Erasure is to create value types that may be
copyable, movable, and most importantly, easily reasoned about.
However, such a value type is not of the same quality as a regular value
type; there are some limitations. In particular, Type Erasure works best
for unary operations but has its limits for binary operations.

Nonintrusive

The intent of Type Erasure is to create an external, nonintrusive
abstraction based on the example set by the External Polymorphism
design pattern. All types providing the behavior expected by the
abstraction are automatically supported, without the need to apply any
modifications to them.

Extendable, unrelated set of types

Type Erasure is firmly based on object-oriented principles, i.e., it
enables you to add types easily. These types, though, should not be
connected in any way. They do not have to share common behavior via
some base class. Instead, it should be possible to add any fitting type,
without any intrusive measure, to this set of types.

https://oreil.ly/aLbCD


Potentially nonpolymorphic

As demonstrated with the External Polymorphism design pattern, types
should not have to buy into the set by inheritance. They should also not
have to provide virtual functionality on their own, but they should be
decoupled from their polymorphic behavior. However, types with base
classes or virtual functions are not excluded.

Same semantic behavior

The goal is not to provide an abstraction for all possible types but to
provide a semantic abstraction for a set of types that provide the same
operations (including same syntax) and adhere to some expected
behavior, according to the LSP (see “Guideline 6: Adhere to the
Expected Behavior of Abstractions”). If possible, for any type that does
not provide the expected functionality, a compile-time error should be
created.

With this formulation of the intent in mind, let’s take a look at the
dependency graph of Type Erasure (see Figure 8-1). The graph should look
very familiar, as the structure of the pattern is dominated by the inherent
structure of the External Polymorphism design pattern (see Figure 7-8). The
most important difference and addition is the Shape class on the highest
level of the architecture. This class serves as a wrapper around the external
hierarchy introduced by External Polymorphism. Primarily, since this
external hierarchy will not be used directly anymore, but also to reflect the
fact that ShapeModel is storing, or “owning,” a concrete type, the name of
the class template has been adapted to OwningShapeModel.





Figure 8-1. Dependency graph for the Type Erasure design pattern

An Owning Type Erasure Implementation
OK, but now, with the structure of Type Erasure in mind, let’s take a look at
its implementation details. Still, despite the fact that you’ve seen all the
ingredients in action before, the implementation details are not particularly
beginner-friendly and are not for the fainthearted. And that is despite the
fact that I have picked the simplest Type Erasure implementation I’m aware
of. Therefore, I will try to keep everything at a reasonable level and not
stray too much into the realm of implementation details. Among other
things, this means that I won’t try to squeeze out every tiny bit of
performance. For instance, I won’t use forwarding references or avoid
dynamic memory allocations. Also, I will favor readability and code clarity.
While this may be a disappointment to you, I believe that will save us a lot
of headache. However, if you want to dig deeper into the implementation
details and optimization options, I recommend taking a look at “Guideline
33: Be Aware of the Optimization Potential of Type Erasure”.

We again start with the Circle and Square classes:

//---- <Circle.h> ---------------- 
 
class Circle 
{ 
 public: 
   explicit Circle( double radius ) 
      : radius_( radius ) 
   {} 
 
   double radius() const { return radius_; } 
   /* Several more getters and circle-specific utility functions */ 
 
 private: 
   double radius_; 
   /* Several more data members */ 
}; 
 
 
//---- <Square.h> ---------------- 
 



class Square 
{ 
 public: 
   explicit Square( double side ) 
      : side_( side ) 
   {} 
 
   double side() const { return side_; } 
   /* Several more getters and square-specific utility functions */ 
 
 private: 
   double side_; 
   /* Several more data members */ 
};

These two classes have not changed since we last encountered them in the
discussion of External Polymorphism. But it still pays off to again stress
that these two are completely unrelated, do not know about each other, and
—most importantly—are nonpolymorphic, meaning that they do not inherit
from any base class or introduce virtual function on their own.

We have also seen the ShapeConcept and OwningShapeModel classes
before, the latter under the name ShapeModel:

 
//---- <Shape.h> ---------------- 
 
#include <memory> 
#include <utility> 
 
namespace detail { 
 
class ShapeConcept   
{ 
 public: 
   virtual ~ShapeConcept() = default; 
   virtual void draw() const = 0;   
   virtual std::unique_ptr<ShapeConcept> clone() const = 0;   
}; 
 
template< typename ShapeT 
        , typename DrawStrategy > 
class OwningShapeModel : public ShapeConcept   
{ 



 public: 
   explicit OwningShapeModel( ShapeT shape, DrawStrategy drawer )   
      : shape_{ std::move(shape) } 
      , drawer_{ std::move(drawer) } 
   {} 
 
   void draw() const override { drawer_(shape_); }   
 
   std::unique_ptr<ShapeConcept> clone() const override 
   { 
      return std::make_unique<OwningShapeModel>( *this );   
   } 
 
 private: 
   ShapeT shape_;   
   DrawStrategy drawer_;   
}; 
 
} // namespace detail 

Next to the name change, there are a couple of other, important differences.
For instance, both classes have been moved to the detail namespace. The
name of the namespace indicates that these two classes are now becoming
implementation details, i.e., they are not intended for direct use anymore.
The ShapeConcept class ( ) still introduces the pure virtual function
draw() to represent the requirement for drawing a shape ( ). In addition,
ShapeConcept now also introduces a pure virtual clone() function ( ). “I
know what this is, this is the Prototype design pattern!” you exclaim. Yes,
correct. The name clone() is very strongly connected to Prototype and is a
strong indication of this design pattern (but not a guarantee). However,
although the choice of the function name is very reasonable and canonical,
allow me to point out explicitly that the choice of the function name for
clone(), and also for draw(), is our own: these names are now
implementation details and do not have any relationship to the names that
we require from our ShapeT types. We could as well name them do_draw()
and do_clone(), and it would not have any consequence on the ShapeT
types. The real requirement on the ShapeT types is defined by the
implementation of the draw() and clone() functions.
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As ShapeConcept is again the base class for the external hierarchy, the
draw() function, the clone() function, and the destructor represent the set
of requirements for all kinds of shapes. This means that all shapes must
provide some drawing behavior—they must be copyable and destructible.
Note that these three functions are only requirement choices for this
example. In particular, copyability is not a general requirement for all
implementations of Type Erasure.

The OwningShapeModel class ( ) again represents the one and only
implementation of the ShapeConcept class. As before, OwningShapeModel
takes a concrete shape type and a drawing Strategy in its constructor ( )
and uses these to initialize its two data members (  and ). Since
OwningShapeModel inherits from ShapeConcept, it must implement the
two pure virtual functions. The draw() function is implemented by
applying the given drawing Strategy ( ), while the clone() function is
implemented to return an exact copy of the corresponding
OwningShapeModel ( ).

NOTE
If you’re right now thinking, “Oh no, std::make_unique(). That means dynamic
memory. Then I can’t use that in my code!”—don’t worry. std::make_unique() is
merely an implementation detail, a choice to keep the example simple. In “Guideline 33:
Be Aware of the Optimization Potential of Type Erasure”, you will see how to avoid
dynamic memory with the SBO.

“I’m pretty unimpressed so far. We’ve barely moved beyond the
implementation of the External Polymorphism design pattern.” I completely
understand the criticism. However, we are just one step away from turning
External Polymorphism into Type Erasure, just one step away from
switching from reference semantics to value semantics. All we need is a
value type, a wrapper around the external hierarchy introduced by
ShapeConcept and OwningShapeModel, that handles all the details that we
don’t want to perform manually: the instantiation of the OwningShapeModel



class template, managing pointers, performing allocations, and dealing with
lifetime. This wrapper is given in the form of the Shape class:

 
//---- <Shape.h> ---------------- 
 
// ... 
 
class Shape 
{ 
 public: 
   template< typename ShapeT 
           , typename DrawStrategy > 
   Shape( ShapeT shape, DrawStrategy drawer )   
   { 
      using Model = detail::OwningShapeModel<ShapeT,DrawStrategy>;   
      pimpl_ = std::make_unique<Model>( std::move(shape)   
                                      , std::move(drawer) ); 
   } 
 
   // ... 
 
 private: 
   // ... 
 
   std::unique_ptr<detail::ShapeConcept> pimpl_;   
}; 

The first, and perhaps most important, detail about the Shape class is the
templated constructor ( ). As the first argument, this constructor takes any
kind of shape (called ShapeT), and as the second argument, the desired
DrawStrategy. To simplify the instantiation of the corresponding
detail::OwningShapeModel class template, it proves to be helpful to use a
convenient type alias ( ). This alias is used to instantiate the required model
by std::make_unique() ( ). Both the shape and the drawing Strategy are
passed to the new model.

The newly created model is used to initialize the one data member of the
Shape class: the pimpl_ ( ). “I recognize this one, too; this is a Bridge!”
you happily announce. Yes, correct again. This is an application of the
Bridge design pattern. In the construction, we create a concrete



OwningShapeModel based on the actual given types ShapeT and
DrawStrategy, but we store it as a pointer to ShapeConcept. By doing this
you create a Bridge to the implementation details, a Bridge to the real shape
type. However, after the initialization of pimpl_, after the constructor is
finished, Shape doesn’t remember the actual type. Shape does not have a
template parameter or any member function that would reveal the concrete
type it stores, and there is no data member that remembers the given type.
All it holds is a pointer to the ShapeConcept base class. Thus, its memory
of the real shape type has been erased. Hence the name of the design
pattern: Type Erasure.

The only thing missing in our Shape class is the functionality required for a
true value type: the copy and move operations. Luckily, due to the
application of std::unique_ptr, our effort is pretty limited. Since the
compiler-generated destructor and the two move operations will work, we
only need to deal with the two copy operations:

 
//---- <Shape.h> ---------------- 
 
// ... 
 
class Shape 
{ 
 public: 
   // ... 
 
   Shape( Shape const& other )   
      : pimpl_( other.pimpl_->clone() ) 
   {} 
 
   Shape& operator=( Shape const& other )   
   { 
      // Copy-and-Swap Idiom 
      Shape copy( other ); 
      pimpl_.swap( copy.pimpl_ ); 
      return *this; 
   } 
 
   ~Shape() = default; 
   Shape( Shape&& ) = default; 
   Shape& operator=( Shape&& ) = default; 



 
 private: 
   friend void draw( Shape const& shape )   
   { 
      shape.pimpl_->draw(); 
   } 
 
   // ... 
}; 

The copy constructor ( ) could be a very difficult function to implement,
since we do not know the concrete type of shape stored in the other Shape.
However, by providing the clone() function in the ShapeConcept base
class, we can ask for an exact copy without needing to know anything about
the concrete type. The shortest, most painless, and most convenient way to
implement the copy assignment operator ( ) is to build on the Copy-and-
Swap idiom.

In addition, the Shape class provides a so-called hidden friend called
draw() ( ). This friend function is called a hidden friend, since although
it’s a free function, it is defined within the body of the Shape class. As a
friend, it’s granted full access to the private data member and will be
injected into the surrounding namespace.

“Didn’t you say that friends are bad?” you ask. I admit, that’s what I said
in “Guideline 4: Design for Testability”. However, I also explicitly stated
that hidden friends are OK. In this case, the draw() function is an integral
part of the Shape class and definitely a real friend (almost part of the
family). “But then it should be a member function, right?” you argue.
Indeed, that would be a valid alternative. If you like this better, go for it. In
this case, my preference is to use a free function, since one of our goals was
to reduce dependencies by extracting the draw() operation. This goal
should also be reflected in the Shape implementation. However, since the
function requires access to the pimpl_ data member, and in order to not
increase the overload set of draw() functions, I implement it as a hidden
friend.
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This is it. All of it. Let’s take a look at how beautifully the new
functionality works:

 
//---- <Main.cpp> ---------------- 
 
#include <Circle.h> 
#include <Square.h> 
#include <Shape.h> 
#include <cstdlib> 
 
int main() 
{ 
   // Create a circle as one representative of a concrete shape type 
   Circle circle{ 3.14 }; 
 
   // Create a drawing strategy in the form of a lambda 
   auto drawer = []( Circle const& c ){ /*...*/ }; 
 
   // Combine the shape and the drawing strategy in a 'Shape' abstraction 
   // This constructor call will instantiate a 'detail::OwningShapeModel' for 
   // the given 'Circle' and lambda types 
   Shape shape1( circle, drawer ); 
 
   // Draw the shape 
   draw( shape1 );   
 
   // Create a copy of the shape by means of the copy constructor 
   Shape shape2( shape1 ); 
 
   // Drawing the copy will result in the same output 
   draw( shape2 );   
 
   return EXIT_SUCCESS; 
} 

We first create shape1 as an abstraction for a Circle and an associated
drawing Strategy. This feels easy, right? There’s no need to manually
allocate and no need to deal with pointers. With the draw() function, we’re
able to draw this Shape ( ). Directly afterward, we create a copy of the
shape. A real copy—a “deep copy,” not just the copy of a pointer. Drawing
the copy with the draw() function will result in the same output ( ). Again,



this feels good: you can rely on the copy operations of the value type (in
this case, the copy constructor), and you do not have to clone() manually.

Pretty amazing, right? And definitely much better than using External
Polymorphism manually. I admit that after all these implementation details,
it may be a little hard to see it right away, but if you step through the jungle
of implementation details, I hope you realize the beauty of this approach:
you no longer have to deal with pointers, there are no manual allocations,
and you don’t have to deal with inheritance hierarchies anymore. All of
these details are there, yes, but all evidence is nicely encapsulated within
the Shape class. Still, you didn’t lose any of the decoupling benefits: you
are still able to easily add new types, and the concrete shape types are still
oblivious about the drawing behavior. They are only connected to the
desired functionality via the Shape constructor.

“I’m wondering,” you begin to ask, “Couldn’t we make this much easier? I
envision a main() function that looks like this”:

//---- <YourMain.cpp> ---------------- 
 
int main() 
{ 
   // Create a circle as one representative of a concrete shape type 
   Circle circle{ 3.14 }; 
 
   // Bind the circle to some drawing functionality 
   auto drawingCircle = [=]() { myCircleDrawer(circle); }; 
 
   // Type-erase the circle equipped with drawing behavior 
   Shape shape( drawingCircle ); 
 
   // Drawing the shape 
   draw( shape ); 
 
   // ... 
 
   return EXIT_SUCCESS; 
}

That is a great idea. Remember, you are in charge of all the implementation
details of the Type Erasure wrapper and how to bring together types and



their operation implementation. If you like this form better, go for it!
However, please do not forget that in our Shape example, for the sake of
simplicity and code brevity, I have deliberately used only a single
functionality with external dependencies (drawing). There could be more
functions that introduce dependencies, such as the serialization of shapes. In
that case, the lambda approach would not work, as you would need
multiple, named functions (e.g., draw() and serialize()). So, ultimately,
it depends. It depends on what kind of abstraction your Type Erasure
wrapper represents. But whatever implementation you prefer, just make
sure that you do not introduce artificial dependencies between the different
pieces of functionality and/or code duplication. In other words, remember
“Guideline 2: Design for Change”! That is the reason I favored the solution
based on the Strategy design pattern, which you, however, shouldn’t
consider the true and only solution. On the contrary, you should strive to
fully exploit the potential of the loose coupling of Type Erasure.

Analyzing the Shortcomings of the Type Erasure Design
Pattern
Despite the beauty of Type Erasure and the large number of benefits that
you acquire, especially from a design perspective, I don’t pretend that there
are no downsides to this design pattern. No, it wouldn’t be fair to keep
potential disadvantages from you.

The first, and probably most obvious, drawback for you might be the
implementation complexity of this pattern. As stated before, I have
explicitly kept the implementation details at a reasonable level, which
hopefully helped you to get the idea. I hope I have also given you the
impression that it is not so difficult after all: a basic implementation of Type
Erasure can be realized within approximately 30 lines of code. Still, you
might feel that it is too complex. Also, as soon as you start to go beyond the
basic implementation and consider performance, exception safety, etc., the
implementation details indeed become quite tricky very quickly. In these
cases, your safest and most convenient option is to use a third-party library
instead of dealing with all of these details yourself. Possible libraries



include the dyno library from Louis Dionne, the zoo library from Eduardo
Madrid, the erasure library from Gašper Ažman, and the Boost Type
Erasure library from Steven Watanabe.

In the explanation of the intent of Type Erasure, I mentioned the second
disadvantage, which is much more important and limiting: although we are
now dealing with values that can be copied and moved, using Type Erasure
for binary operations is not straightforward. For instance, it is not easily
possible to do an equality comparison on these values, as you would expect
from regular values:

int main() 
{ 
   // ... 
 
   if( shape1 == shape2 ) { /*...*/ }  // Does not compile! 
 
   return EXIT_SUCCESS; 
}

The reason is that, after all, Shape is only an abstraction from a concrete
shape type and only stores a pointer-to-base. As you would deal with
exactly the same problem if you used External Polymorphism directly, this
is definitely not a new problem in Type Erasure, and you might not even
count this as a real disadvantage. Still, while equality comparison is not an
expected operation when you’re dealing with pointers-to-base, it usually is
an expected operation on values.

Comparing Two Type Erasure Wrappers
“Isn’t this just a question of exposing the necessary functionality in the
interface of Shapes?” you wonder. “For instance, we could simply add an
area() function to the public interface of shapes and use it to compare
two items”:

bool operator==( Shape const& lhs, Shape const& rhs ) 
{ 
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   return lhs.area() == rhs.area(); 
}

“This is easy to do. So what am I missing?” I agree that this might be all
you need: if two objects are equal if some public properties are equal, then
this operator will work for you. In general, the answer would have to be “it
depends.” In this particular case, it depends on the semantics of the
abstraction that the Shape class represents. The question is: when are two
Shapes equal? Consider the following example with a Circle and a
Square:

#include <Circle.h> 
#include <Square.h> 
#include <cstdlib> 
 
int main() 
{ 
   Shape shape1( Circle{3.14} ); 
   Shape shape2( Square{2.71} ); 
 
   if( shape1 == shape2 ) { /*...*/ } 
 
   return EXIT_SUCCESS; 
}

When are these two Shapes equal? Are they equal if their areas are equal, or
are they equal if the instances behind the abstraction are equal, meaning that
both Shapes are of the same type and have the same properties? It depends.
In the same spirit, I could ask the question, when are two Persons equal?
Are they equal if their first names are equal? Or are they equal if all of their
characteristics are equal? It depends on the desired semantics. And while
the first comparison is easily done, the second one is not. In a general case,
I assume that the second situation is far more likely to be the desired
semantics, and therefore I argue that using Type Erasure for equality
comparison and more generally for binary operations is not straightforward.

Note, however, that I did not say that equality comparison is impossible.
Technically, you can make it work, although it turns out to be a rather ugly
solution. Therefore, you have to promise not to tell anyone that you got this



idea from me. “You just made me even more curious,” you smile
whimsically. OK, so here it is:

 
//---- <Shape.h> ---------------- 
 
// ... 
 
namespace detail { 
 
class ShapeConcept 
{ 
 public: 
   // ... 
   virtual bool isEqual( ShapeConcept const* c ) const = 0; 
}; 
 
template< typename ShapeT 
        , typename DrawStrategy > 
class OwningShapeModel : public ShapeConcept 
{ 
 public: 
   // ... 
 
   bool isEqual( ShapeConcept const* c ) const override 
   { 
      using Model = OwningShapeModel<ShapeT,DrawStrategy>; 
      auto const* model = dynamic_cast<Model const*>( c );   
      return ( model && shape_ == model->shape_ ); 
   } 
 
 private: 
   // ... 
}; 
 
} // namespace detail 
 
 
class Shape 
{ 
   // ... 
 
 private: 
   friend bool operator==( Shape const& lhs, Shape const& rhs ) 
   { 
      return lhs.pimpl_->isEqual( rhs.pimpl_.get() ); 



   } 
 
   friend bool operator!=( Shape const& lhs, Shape const& rhs ) 
   { 
      return !( lhs == rhs ); 
   } 
 
   // ... 
}; 
 
 
//---- <Circle.h> ---------------- 
 
class Circle 
{ 
   // ... 
}; 
 
bool operator==( Circle const& lhs, Circle const& rhs ) 
{ 
   return lhs.radius() == rhs.radius(); 
} 
 
 
//---- <Square.h> ---------------- 
 
class Square 
{ 
   // ... 
}; 
 
bool operator==( Square const& lhs, Square const& rhs ) 
{ 
   return lhs.side() == rhs.side(); 
} 

To make equality comparison work, you could use a dynamic_cast ( ).
However, this implementation of equality comparison holds two severe
disadvantages. First, as you saw in “Guideline 18: Beware the Performance
of Acyclic Visitor”, a dynamic_cast does most certainly not count as a fast
operation. Hence, you would have to pay a considerable runtime cost for
every comparison. Second, in this implementation, you can only
successfully compare two Shapes if they are equipped with the same
DrawStrategy. While this might be reasonable in one context, it might also



be considered an unfortunate limitation in another context. The only
solution I am aware of is to return to std::function to store the drawing
Strategy, which, however, would result in another performance penalty.  In
summary, depending on the context, equality comparison may be possible,
but it’s usually neither easy nor cheap to accomplish. This is evidence to my
earlier statement that Type Erasure doesn’t support binary operations.

Interface Segregation of Type Erasure Wrappers
“What about the Interface Segregation Principle (ISP)?” you ask. “While
using External Polymorphism, it was easy to separate concerns in the base
class. It appears we’ve lost this ability, right?” Excellent question. So you
remember my example with the JSONExportable and Serializable base
classes in “Guideline 31: Use External Polymorphism for Nonintrusive
Runtime Polymorphism”. Indeed, with Type Erasure we are no longer able
to use the hidden base class, only the abstracting value type. Therefore, it
may appear as if the ISP is out of reach:

class Document  // Type-erased 'Document' 
{ 
 public: 
   // ... 
   void exportToJSON( /*...*/ ) const; 
   void serialize( ByteStream& bs, /*...*/ ) const; 
   // ... 
}; 
 
// Artificial coupling to 'ByteStream', although only the JSON export is 
needed 
void exportDocument( Document const& doc ) 
{ 
   // ... 
   doc.exportToJSON( /* pass necessary arguments */ ); 
   // ... 
}

However, fortunately, this impression is incorrect. You can easily adhere to
the ISP by providing several type-erased abstractions:
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Document doc = /*...*/;  // Type-erased 'Document' 
doc.exportToJSON( /* pass necessary arguments */ ); 
doc.serialize( /* pass necessary arguments */ ); 
 
JSONExportable jdoc = doc;  // Type-erased 'JSONExportable' 
jdoc.exportToJSON( /* pass necessary arguments */ ); 
 
Serializable sdoc = doc;  // Type-erased 'Serializable' 
sdoc.serialize( /* pass necessary arguments */ );

Before considering this, take a look at “Guideline 34: Be Aware of the
Setup Costs of Owning Type Erasure Wrappers”.

“Apart from the implementation complexity and the restriction to unary
operations, there seem to be no disadvantages. Well, then, I have to say this
is amazing stuff indeed! The benefits clearly outweigh the drawbacks.”
Well, of course it always depends, meaning that in a specific context some
of these issues might cause some pain. But I agree that, altogether, Type
Erasure proves to be a very valuable design pattern. From a design
perspective, you’ve gained a formidable level of decoupling, which will
definitely lead to less pain when changing or extending your software.
However, although this is already fascinating, there’s more. I’ve mentioned
performance a couple of times but haven’t yet shown any performance
numbers. So let’s take a look at the performance results.

Performance Benchmarks
Before showing you the performance results for Type Erasure, let me
remind you about the benchmark scenario that we also used to benchmark
the Visitor and Strategy solutions (see Table 4-2 in “Guideline 16: Use
Visitor to Extend Operations” and Table 5-1 in “Guideline 23: Prefer a
Value-Based Implementation of Strategy and Command”). This time I have
extended the benchmark with a Type Erasure solution based on the
OwningShapeModel implementation. For the benchmark, we are still using
four different kinds of shapes (circles, squares, ellipses, and rectangles).
And again, I’m running 25,000 translate operations on 10,000 randomly
created shapes. I use both GCC 11.1 and Clang 11.1, and for both
compilers, I’m adding only the -O3 and -DNDEBUG compilation flags. The



platform I’m using is macOS Big Sur (version 11.4) on an 8-Core Intel
Core i7 with 3.8 GHz, 64 GB of main memory.

Table 8-1 shows the performance numbers. For your convenience, I
reproduced the performance results from the Strategy benchmarks. After
all, the Strategy design pattern is the solution that is aiming at the same
design space. The most interesting line, though, is the last line. It shows the
performance result for the Type Erasure design pattern.

Table 8-1. Performance results for the Type Erasure
implementations

Type Erasure implementation GCC 11.1 Clang 11.1

Object-oriented solution 1.5205 s 1.1480 s

std::function 2.1782 s 1.4884 s

Manual implementation of std::function 1.6354 s 1.4465 s

Classic Strategy 1.6372 s 1.4046 s

Type Erasure 1.5298 s 1.1561 s

“Looks very interesting. Type Erasure seems to be pretty fast. Apparently
only the object-oriented solution is faster.” Yes. For Clang, the performance
of the object-oriented solution is a little better. But only a little. However,
please remember that the object-oriented solution does not decouple
anything: the draw() function is implemented as a virtual member function
in the Shape hierarchy, and thus you experience heavy coupling to the
drawing functionality. While this may come with little performance
overhead, from a design perspective, this is a worst-case scenario. Taking
this into account, the performance numbers of Type Erasure are truly
marvelous: it performs between 6% and 20% better than any Strategy
implementation. Thus, Type Erasure not only provides the strongest
decoupling but also performs better than all the other attempts to reduce
coupling.9



A Word About Terminology
In summary, Type Erasure is an amazing approach to achieve both efficient
and loosely coupled code. While it may have a few limitations and
disadvantages, the one thing you probably cannot ignore easily is the
complex implementation details. For that reason, many people, including
me and Eric Niebler, feel that Type Erasure should become a language
feature:

If I could go back in time and had the power to change C++, rather than
adding virtual functions, I would add language support for type erasure
and concepts. Define a single-type concept, automatically generate a
type-erasing wrapper for it.

There is more to be done, though, to establish Type Erasure as a real design
pattern. I have introduced Type Erasure as a compound design pattern built
from External Polymorphism, Bridge, and Prototype. I’ve introduced it as a
value-based technique for providing strong decoupling of a set of types
from their associated operations. However, unfortunately, you might see
other “forms” of Type Erasure: over time, the term Type Erasure has been
misused and abused for all kinds of techniques and concepts. For instance,
sometimes people refer to a void* as Type Erasure. Rarely, you also hear
about Type Erasure in the context of inheritance hierarchies, or more
specifically a pointer-to-base. And finally, you also might hear about Type
Erasure in the context of std::variant.

The std::variant example especially demonstrates how deeply flawed
this overuse of the term Type Erasure really is. While External
Polymorphism, the main design pattern behind Type Erasure, is about
enabling you to add new types, the Visitor design pattern and its modern
implementation as std::variant are about adding new operations (see
“Guideline 15: Design for the Addition of Types or Operations”). From a
software design perspective, these two solutions are completely orthogonal
to each other: while Type Erasure truly decouples from concrete types and
erases type information, the template arguments of std::variant reveal all
possible alternatives and therefore make you depend on these types. Using
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the same term for both of them results in exactly zero information conveyed
when using the term Type Erasure and generates these types of comments:
“I would suggest we use Type Erasure to solve this problem.” “Could you
please be more specific? Do you want to add types or operations?” As such,
the term would not fulfill the qualities of a design pattern; it wouldn’t carry
any intent. Therefore, it would be useless.

To give Type Erasure its well-earned place in the hall of design patterns and
to give it any meaning, consider using the term only for the intent discussed
in this guideline.

GUIDELINE 32: CONSIDER REPLACING INHERITANCE
HIERARCHIES WITH TYPE ERASURE

Apply the Type Erasure design pattern with the intent to provide a
value-based, nonintrusive abstraction for an extendable set of
unrelated, potentially nonpolymorphic types with the same
semantic behavior.

Consider Type Erasure as a compound design pattern, built from
the External Polymorphism, Bridge, and Prototype design patterns.

Understand the advantages of Type Erasure, but also keep in mind
its limitations.

Use the term Type Erasure only to communicate its intent as a
design pattern that allows the easy addition of types supporting a
fixed set of operations.

Guideline 33: Be Aware of the Optimization
Potential of Type Erasure
The primary focus of this book is software design. Therefore, all this talk
about structuring software, about design principles, about tools for



managing dependencies and abstractions, and, of course, all the information
on design patterns is at the center of interest. Still, I’ve mentioned a few
times that performance is important. Very important! After all, C++ is a
performance-centric programming language. Therefore, I now make an
exception: this guideline is devoted to performance. Yes, I’m serious: no
talk about dependencies, (almost) no examples for separation of concerns,
no value semantics. Just performance. “Finally, some performance stuff—
great!” you cheer. However, be aware of the consequences: this guideline is
pretty heavy on implementation details. And as it is in C++, mentioning one
detail requires you to also deal with two more details, and so you are pretty
quickly sucked into the realm of implementation details. To avoid that (and
to keep my publisher happy), I will not elaborate on every implementation
detail or demonstrate all the alternatives. I will, however, give additional
references that should help you to dig deeper.

In “Guideline 32: Consider Replacing Inheritance Hierarchies with Type
Erasure”, you saw great performance numbers for our basic, unoptimized
Type Erasure implementation. However, since we are now in possession of
a value type and a wrapper class, not just a pointer, we have gained a
multitude of opportunities to speed up performance. This is why we will
take a look at two options to improve performance: the SBO and manual
virtual dispatch.

Small Buffer Optimization
Let’s start our quest to speed up the performance of our Type Erasure
implementation. One of the first things that usually comes to mind when
talking about performance is optimizing memory allocations. This is
because acquiring and freeing dynamic memory can be very slooowww and
nondeterministic. And for real: optimizing memory allocations can make all
the difference between slow and lightning fast.

However, there is a second reason to look into memory. In “Guideline 32:
Consider Replacing Inheritance Hierarchies with Type Erasure”, I might
have accidentally given you the impression that we need dynamic memory
to pull off Type Erasure. Indeed, one of the initial implementation details in
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our first Shape class was the unconditional dynamic memory allocation in
the constructor and clone() function, independent of the size of the given
object, so for both small and large objects, we would always perform a
dynamic memory allocation with std::make_unique(). This choice is
limiting, not just because of performance, in particular for small objects, but
also because in certain environments dynamic memory is not available.
Therefore, I should demonstrate to you that there’s a lot you can do with
respect to memory. In fact, you are in full control of memory management!
Since you are using a value type, a wrapper, you can deal with memory in
any way you see fit. One of the many options is to completely rely on in-
class memory and emit a compile-time error if objects are too large.
Alternatively, you might switch between in-class and dynamic memory,
depending on the size of the stored object. Both of these are made possible
by the SBO.

To give you an idea of how SBO works, let’s take a look at a Shape
implementation that never allocates dynamically but uses only in-class
memory:

 
#include <array> 
#include <cstdlib> 
#include <memory> 
 
template< size_t Capacity = 32U, size_t Alignment = alignof(void*) >   
class Shape 
{ 
 public: 
   // ... 
 
 private: 
   // ... 
 
   Concept* pimpl()   
   { 
      return reinterpret_cast<Concept*>( buffer_.data() ); 
   } 
 
   Concept const* pimpl() const   
   { 
      return reinterpret_cast<Concept const*>( buffer_.data() ); 



   } 
 
   alignas(Alignment) std::array<std::byte,Capacity> buffer_;   
}; 

This Shape class does not store std::unique_ptr anymore, but instead
owns an array of properly aligned bytes ( ).  To give users of Shape the
flexibility to adjust both the capacity and the alignment of the array, you
can provide the two nontype template parameters, Capacity and
Alignment, to the Shape class ( ).  While this improves the flexibility to
adjust to different circumstances, the disadvantage of that approach is that
this turns the Shape class into a class template. As a consequence, all
functions that use this abstraction will likely turn into function templates.
This may be undesirable, for instance, because you might have to move
code from source files into header files. However, be aware that this is just
one of many possibilities. As stated before, you are in full control.

To conveniently work with the std::byte array, we add a pair of pimpl()
functions (named based on the fact that this still realizes the Bridge design
pattern, just using in-class memory) (  and ). “Oh no, a
reinterpret_cast!” you say. “Isn’t this super dangerous?” You are
correct; in general, a reinterpret_cast should be considered potentially
dangerous. However, in this particular case, we are backed up by the C++
standard, which explains that what we are doing here is perfectly safe.

As you probably expect by now, we also need to introduce an external
inheritance hierarchy based on the External Polymorphism design pattern.
This time we realize this hierarchy in the private section of the Shape
class. Not because this is better or more suited for this Shape
implementation, but for the sole reason to show you another alternative:

 
template< size_t Capacity = 32U, size_t Alignment = alignof(void*) > 
class Shape 
{ 
 public: 
   // ... 
 
 private: 
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   struct Concept 
   { 
      virtual ~Concept() = default; 
      virtual void draw() const = 0; 
      virtual void clone( Concept* memory ) const = 0;   
      virtual void move( Concept* memory ) = 0;   
   }; 
 
   template< typename ShapeT, typename DrawStrategy > 
   struct OwningModel : public Concept 
   { 
      OwningModel( ShapeT shape, DrawStrategy drawer ) 
         : shape_( std::move(shape) ) 
         , drawer_( std::move(drawer) ) 
      {} 
 
      void draw() const override 
      { 
         drawer_( shape_ ); 
      } 
 
      void clone( Concept* memory ) const override   
      { 
         std::construct_at( static_cast<OwningModel*>(memory), *this ); 
 
         // or: 
         // auto* ptr = 
         //    const_cast<void*>(static_cast<void const volatile*>(memory)); 
         // ::new (ptr) OwningModel( *this ); 
      } 
 
      void move( Concept* memory ) override   
      { 
         std::construct_at( static_cast<OwningModel*>(memory), 
std::move(*this) ); 
 
         // or: 
         // auto* ptr = 
         //    const_cast<void*>(static_cast<void const volatile*>(memory)); 
         // ::new (ptr) OwningModel( std::move(*this) ); 
      } 
 
      ShapeT shape_; 
      DrawStrategy drawer_; 
   }; 
 
   // ... 
 



   alignas(Alignment) std::array<std::byte,Capacity> buffer_; 
}; 

The first interesting detail in this context is the clone() function ( ). As
clone() carries the responsibility of creating a copy, it needs to be adapted
to the in-class memory. So instead of creating a new Model via
std::make_unique(), it creates a new Model in place via
std::construct_at(). Alternatively, you could use a placement new to
create the copy at the given memory location.

“Wow, wait a second! That’s a pretty tough piece of code to swallow.
What’s with all these casts? Are they really necessary?” I admit, these lines
are a little challenging. Therefore, I should explain them in detail. The good
old approach to creating an instance in place is via placement new.
However, using new always carries the danger of someone (inadvertently or
maliciously) providing a replacement for the class-specific new operator. To
avoid any kind of problem and reliably construct an object in place, the
given address is first converted to void const volatile* via a
static_cast and then to void* via a const_cast. The resulting address is
passed to the global placement new operator. Indeed, not the most obvious
piece of code. Therefore, it is advisable to use the C++20 algorithm
std::construct_at(): it provides you with exactly the same functionality
but with a significantly nicer syntax.

However, we need one more function: clone() is concerned only with
copy operations. It doesn’t apply to move operations. For that reason, we
extend the Concept with a pure virtual move() function and consequently
implement it in the OwningModel class template ( ).

“Is this really necessary? We’re using in-class memory, which cannot be
moved to another instance of Shape. What’s the point of that move()?”
Well, you are correct that we can’t move the memory itself from one object
to another, but we can still move the shape stored inside. Thus, the move()
function moves an OwningModel from one buffer to another instead of
copying it.
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The clone() and move() functions are used in the copy constructor ( ), the
copy assignment operator ( ), the move constructor ( ), and the move
assignment operator of Shape ( ):

 
template< size_t Capacity = 32U, size_t Alignment = alignof(void*) > 
class Shape 
{ 
 public: 
   // ... 
 
   Shape( Shape const& other ) 
   { 
      other.pimpl()->clone( pimpl() );   
   } 
 
   Shape& operator=( Shape const& other ) 
   { 
      // Copy-and-Swap Idiom 
      Shape copy( other );   
      buffer_.swap( copy.buffer_ ); 
      return *this; 
   } 
 
   Shape( Shape&& other ) noexcept 
   { 
      other.pimpl()->move( pimpl() );   
   } 
 
   Shape& operator=( Shape&& other ) noexcept 
   { 
      // Copy-and-Swap Idiom 
      Shape copy( std::move(other) );   
      buffer_.swap( copy.buffer_ ); 
      return *this; 
   } 
 
   ~Shape()   
   { 
      std::destroy_at( pimpl() ); 
      // or: pimpl()->~Concept(); 
   } 
 
 private: 
   // ... 
 



   alignas(Alignment) std::array<std::byte,Capacity> buffer_; 
}; 

Definitely noteworthy to mention is the destructor of Shape ( ). Since we
manually create an OwningModel within the byte buffer by
std::construct_at() or a placement new, we are also responsible for
explicitly calling a destructor. The easiest and most elegant way of doing
that is to use the C++17 algorithm std::destroy_at(). Alternatively, you
can explicitly call the Concept destructor.

The last, but essential, detail of Shape is the templated constructor:

template< size_t Capacity = 32U, size_t Alignment = alignof(void*) > 
class Shape 
{ 
 public: 
   template< typename ShapeT, typename DrawStrategy > 
   Shape( ShapeT shape, DrawStrategy drawer ) 
   { 
      using Model = OwningModel<ShapeT,DrawStrategy>; 
 
      static_assert( sizeof(Model) <= Capacity, "Given type is too large" ); 
      static_assert( alignof(Model) <= Alignment, "Given type is misaligned" 
); 
 
      std::construct_at( static_cast<Model*>(pimpl()) 
                       , std::move(shape), std::move(drawer) ); 
      // or: 
      // auto* ptr = 
      //    const_cast<void*>(static_cast<void const volatile*>(pimpl())); 
      // ::new (ptr) Model( std::move(shape), std::move(drawer) ); 
   } 
 
   // ... 
 
 private: 
   // ... 
};

After a pair of compile-time checks that the required OwningModel fits into
the in-class buffer and adheres to the alignment restrictions, an
OwningModel is instantiated into the in-class buffer by
std::construct_at().

https://oreil.ly/2FNtm


With this implementation in hand, we now adapt and rerun the performance
benchmark from “Guideline 32: Consider Replacing Inheritance
Hierarchies with Type Erasure”. We run exactly the same benchmark, this
time without allocating dynamic memory inside Shape and without
fragmenting the memory with many, tiny allocations. As expected, the
performance results are impressive (see Table 8-2).

Table 8-2. Performance results for the Type Erasure
implementations with SBO

Type Erasure implementation GCC 11.1 Clang 11.1

Object-oriented solution 1.5205 s 1.1480 s

std::function 2.1782 s 1.4884 s

Manual implementation of std::function 1.6354 s 1.4465 s

Classic Strategy 1.6372 s 1.4046 s

Type Erasure 1.5298 s 1.1561 s

Type Erasure (SBO) 1.3591 s 1.0348 s

“Wow, this is fast. This is…well, let me do the math…amazing, roughly
20% faster than the fastest Strategy implementation, and even faster than
the object-oriented solution.” It is, indeed. Very impressive, right? Still, you
should remember that these are the numbers that I got on my system. Your
numbers will be different, almost certainly. But even though your numbers
might not be the same, the general takeaway is that there is a lot of potential
to optimize performance by dealing with memory allocations.

However, while the performance is extraordinary, we’ve lost a lot of
flexibility: only OwningModel instantiations that are smaller or equal to the
specified Capacity can be stored inside Shape. Bigger models are
excluded. This brings me back to the idea that we could switch between in-
class and dynamic memory depending on the size of the given shape: small
shapes are stored inside an in-class buffer, while large shapes are allocated



dynamically. You could now go ahead and update the implementation of
Shape to use both kinds of memory. However, at this point it’s probably a
good idea to point out one of our most important design principles again:
separation of concerns. Instead of squeezing all logic and functionality into
the Shape class, it would be easier and (much) more flexible to separate the
implementation details and implement Shape with policy-based design (see
“Guideline 19: Use Strategy to Isolate How Things Are Done”):

template< typename StoragePolicy > 
class Shape;

The Shape class template is rewritten to accept a StoragePolicy. Via this
policy, you would be able to specify from outside how the class should
acquire memory. And of course, you would perfectly adhere to SRP and
OCP. One such storage policy could be the DynamicStorage policy class:

#include <utility> 
 
struct DynamicStorage 
{ 
   template< typename T, typename... Args > 
   T* create( Args&&... args ) const 
   { 
      return new T( std::forward<Args>( args )... ); 
   } 
 
   template< typename T > 
   void destroy( T* ptr ) const noexcept 
   { 
      delete ptr; 
   } 
};

As the name suggests, DynamicPolicy would acquire memory
dynamically, for instance via new. Alternatively, if you have stronger
requirements, you could build on std::aligned_alloc() or similar
functionality to provide dynamic memory with a specified alignment.
Similarly to DynamicStorage, you could provide an InClass Stor age
policy:
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#include <array> 
#include <cstddef> 
#include <memory> 
#include <utility> 
 
template< size_t Capacity, size_t Alignment > 
struct InClassStorage 
{ 
   template< typename T, typename... Args > 
   T* create( Args&&... args ) const 
   { 
      static_assert( sizeof(T) <= Capacity, "The given type is too large" ); 
      static_assert( alignof(T) <= Alignment, "The given type is misaligned" 
); 
 
      T* memory = const_cast<T*>(reinterpret_cast<T const*>(buffer_.data())); 
      return std::construct_at( memory, std::forward<Args>( args )... ); 
 
      // or: 
      // void* const memory = static_cast<void*>(buffer_.data()); 
      // return ::new (memory) T( std::forward<Args>( args )... ); 
   } 
 
   template< typename T > 
   void destroy( T* ptr ) const noexcept 
   { 
      std::destroy_at(ptr); 
      // or: ptr->~T(); 
   } 
 
   alignas(Alignment) std::array<std::byte,Capacity> buffer_; 
};

All of these policy classes provide the same interface: a create() function
to instantiate an object of type T and a destroy() function to do whatever
is necessary to clean up. This interface is used by the Shape class to trigger
construction and destruction, for instance, in its templated constructor ( )
and in the destructor ( ):

 
template< typename StoragePolicy > 
class Shape 
{ 
 public: 
   template< typename ShapeT > 
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   Shape( ShapeT shape ) 
   { 
      using Model = OwningModel<ShapeT>; 
      pimpl_ = policy_.template create<Model>( std::move(shape) )   
   } 
 
   ~Shape() { policy_.destroy( pimpl_ ); }   
 
   // ... All other member functions, in particular the 
   //     special members functions, are not shown 
 
 private: 
   // ... 
   [[no_unique_address]] StoragePolicy policy_{};   
   Concept* pimpl_{}; 
}; 

The last detail that should not be left unnoticed is the data members ( ): the
Shape class now stores an instance of the given StoragePolicy and, do not
be alarmed, a raw pointer to its Concept. Indeed, there is no need to store
std::unique_ptr anymore, since we are manually destroying the object in
our own destructor again. You might also notice the
[[no_unique_address]] attribute on the storage policy. This C++20
feature gives you the opportunity to save the memory for the storage policy.
If the policy is empty, the compiler is now allowed to not reserve any
memory for the data member. Without this attribute, it would be necessary
to reserve at least a single byte for policy_, but likely more bytes due to
alignment restrictions.

In summary, SBO is an effective and one of the most interesting
optimizations for a Type Erasure implementation. For that reason, many
standard types, such as std::function and std::any, use some form of
SBO. Unfortunately, the C++ Standard Library specification doesn’t require
the use of SBO. This is why you can only hope that SBO is used; you can’t
count on it. However, because performance is so important and because
SBO plays such a decisive role, there are already proposals out there that
also suggest standardizing the types inplace_function and inplace_any.
Time will tell if these find their way into the Standard Library.
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Manual Implementation of Function Dispatch
“Wow, this will prove useful. Is there anything else I can do to improve the
performance of my Type Erasure implementation?” you ask. Oh yes, you
can do more. There is a second potential performance optimization. This
time we try to improve the performance of the virtual functions. And yes,
I’m talking about the virtual functions that are introduced by the external
inheritance hierarchy, i.e., by the External Polymorphism design pattern.

“How should we be able to optimize the performance of virtual functions?
Isn’t this something that is completely up to the compiler?” Absolutely,
you’re correct. However, I am not talking about fiddling with backend,
compiler-specific implementation details, but about replacing the virtual
functions with something more efficient. And that is indeed possible.
Remember that a virtual function is nothing but a function pointer that is
stored inside a virtual function table. Every type with at least one virtual
function has such a virtual function table. However, there is only one virtual
function table for each type. In other words, this table is not stored inside
every instance. So in order to connect the virtual function table with every
instance of that type, the class stores an additional, hidden data member,
which we commonly call the vptr and which is a raw pointer to the virtual
function table.

When you call a virtual function, you first go through the vptr to fetch the
virtual function table. Once you’re there, you can grab the corresponding
function pointer from the virtual function table and call it. Therefore, in
total, a virtual function call entails two indirections: the vptr and the
pointer to the actual function. For that reason, roughly speaking, a virtual
function call is twice as expensive as a regular, noninline function call.

These two indirections provide us with the opportunity for optimization: we
can in fact reduce the number of indirections to just one. To achieve that,
we will employ an optimization strategy that works fairly often: we’ll trade
space for speed. What we will do is implement the virtual dispatch
manually by storing the virtual function pointers inside the Shape class. The
following code snippet already gives you a pretty good idea of the details:



 
//---- <Shape.h> ---------------- 
 
#include <cstddef> 
#include <memory> 
 
class Shape 
{ 
 public: 
   // ... 
 
 private: 
   // ... 
 
   template< typename ShapeT 
           , typename DrawStrategy > 
   struct OwningModel   
   { 
      OwningModel( ShapeT value, DrawStrategy drawer ) 
         : shape_( std::move(value) ) 
         , drawer_( std::move(drawer) ) 
      {} 
 
      ShapeT shape_; 
      DrawStrategy drawer_; 
   }; 
 
   using DestroyOperation = void(void*);    
   using DrawOperation    = void(void*);    
   using CloneOperation   = void*(void*);   
 
   std::unique_ptr<void,DestroyOperation*> pimpl_;   
   DrawOperation*  draw_ { nullptr };                
   CloneOperation* clone_{ nullptr };                
}; 

Since we are replacing all virtual functions, even the virtual destructor,
there’s no need for a Concept base class anymore. Consequently, the
external hierarchy is reduced to just the OwningModel class template ( ),
which still acts as storage for a specific kind of shape (ShapeT) and
DrawStrategy. Still, it meets the same fate: all virtual functions are
removed. The only remaining details are the constructor and the data
members.



The virtual functions are replaced by manual function pointers. Since the
syntax for function pointers is not the most pleasant to use, we add a couple
of function type aliases for our convenience:  DestroyOperation
represents the former virtual destructor ( ), DrawOperation represents the
former virtual draw() function ( ), and CloneOperation represents the
former virtual clone() function ( ). Destroy Operation is used to
configure the Deleter of the pimpl_ data member ( ) (and yes, as such it
acts as a Strategy). The latter two, DrawOperation and CloneOperation,
are used for the two additional function pointer data members, draw_ and
clone_ (  and ).

“Oh no, void*s! Isn’t that an archaic and super dangerous way of doing
things?” you gasp. OK, I admit that without explanation it looks very
suspicious. However, stay with me, I promise that everything will be
perfectly fine and type safe. The key to making this work now lies in the
initialization of these function pointers. They are initialized in the templated
constructor of the Shape class:

 
//---- <Shape.h> ---------------- 
 
// ... 
 
class Shape 
{ 
 public: 
   template< typename ShapeT 
           , typename DrawStrategy > 
   Shape( ShapeT shape, DrawStrategy drawer ) 
      : pimpl_(    
            new OwningModel<ShapeT,DrawStrategy>( std::move(shape) 
                                                , std::move(drawer) ) 
          , []( void* shapeBytes ){   
               using Model = OwningModel<ShapeT,DrawStrategy>; 
               auto* const model = static_cast<Model*>(shapeBytes);   
               delete model;   
            } ) 
      , draw_(   
            []( void* shapeBytes ){ 
               using Model = OwningModel<ShapeT,DrawStrategy>; 
               auto* const model = static_cast<Model*>(shapeBytes); 
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               (*model->drawer_)( model->shape_ ); 
            } ) 
      , clone_(   
            []( void* shapeBytes ) -> void* { 
               using Model = OwningModel<ShapeT,DrawStrategy>; 
               auto* const model = static_cast<Model*>(shapeBytes); 
               return new Model( *model ); 
            } ) 
   {} 
 
   // ... 
 
 private: 
   // ... 
}; 

Let’s focus on the pimpl_ data member. It is initialized both by a pointer to
the newly instantiated OwningModel ( ) and by a stateless lambda
expression ( ). You may remember that a stateless lambda is implicitly
convertible to a function pointer. This language guarantee is what we use to
our advantage: we directly pass the lambda as the deleter to the constructor
of unique_ptr, force the compiler to apply the implicit conversion to a
DestroyOperation*, and thus bind the lambda function to the
std::unique_ptr.

“OK, I get the point: the lambda can be used to initialize the function
pointer. But how does it work? What does it do?” Well, also remember that
we are creating this lambda inside the templated constructor. That means
that at this point we are fully aware of the actual type of the passed ShapeT
and DrawStrategy. Thus, the lambda is generated with the knowledge of
which type of OwningModel is instantiated and stored inside the pimpl_.
Eventually it will be called with a void*, i.e., by the address of some
OwningModel. However, based on its knowledge about the actual type of
OwningModel, it can first of all perform a static_cast from void* to
OwningModel<ShapeT,DrawStrategy>* ( ). While in most other contexts
this kind of cast would be suspicious and would likely be a wild guess, in
this context it is perfectly type safe: we can be certain about the correct type
of OwningModel. Therefore, we can use the resulting pointer to trigger the
correct cleanup behavior ( ).



The initialization of the draw_ and clone_ data members is very similar (
and ). The only difference is, of course, the action performed by the
lambdas: they perform the correct actions to draw the shape and to create a
copy of the model, respectively.

I know, this may take some time to digest. But we are almost done; the only
missing detail is the special member functions. For the destructor and the
two move operations, we can again ask for the compiler-generated default.
However, we have to deal with the copy constructor and copy assignment
operator ourselves:

//---- <Shape.h> ---------------- 
 
// ... 
 
class Shape 
{ 
 public: 
   // ... 
 
   Shape( Shape const& other ) 
      : pimpl_( clone_( other.pimpl_.get() ), other.pimpl_.get_deleter() ) 
      , draw_ ( other.draw_ ) 
      , clone_( other.clone_ ) 
   {} 
 
   Shape& operator=( Shape const& other ) 
   { 
      // Copy-and-Swap Idiom 
      using std::swap; 
      Shape copy( other ); 
      swap( pimpl_, copy.pimpl_ ); 
      swap( draw_, copy.draw_ ); 
      swap( clone_, copy.clone_ ); 
      return *this; 
   } 
 
   ~Shape() = default; 
   Shape( Shape&& ) = default; 
   Shape& operator=( Shape&& ) = default; 
 
 private: 
   // ... 
};



This is all we need to do, and we’re ready to try this out. So let’s put this
implementation to the test. Once again we update the benchmark from
“Guideline 32: Consider Replacing Inheritance Hierarchies with Type
Erasure” and run it with our manual implementation of virtual functions. I
have even combined the manual virtual dispatch with the previously
discussed SBO. Table 8-3 shows the performance results.

Table 8-3. Performance results for the Type Erasure
implementations with manual virtual dispatch

Type Erasure implementation GCC 11.1 Clang 11.1

Object-oriented solution 1.5205 s 1.1480 s

std::function 2.1782 s 1.4884 s

Manual implementation of std::function 1.6354 s 1.4465 s

Classic Strategy 1.6372 s 1.4046 s

Type Erasure 1.5298 s 1.1561 s

Type Erasure (SBO) 1.3591 s 1.0348 s

Type Erasure (manual virtual dispatch) 1.1476 s 1.1599 s

Type Erasure (SBO + manual virtual dispatch) 1.2538 s 1.2212 s

The performance improvement for the manual virtual dispatch is
extraordinary for GCC. On my system, I get down to 1.1476 seconds,
which is an improvement of 25% in comparison to the based, unoptimized
implementation of Type Erasure. Clang, on the other hand, does not show
any improvement in comparison to the basic, unoptimized implementation.
Although this may be a little disappointing, the runtime is, of course, still
remarkable.

Unfortunately the combination of SBO and manual virtual dispatch does
not lead to an even better performance. While GCC shows a small
improvement in comparison to the pure SBO approach (which might be



interesting for environments without dynamic memory), on Clang this
combination does not work as well as you might have hoped for.

In summary, there is a lot of potential for optimizing the performance for
Type Erasure implementations. If you’ve been skeptical before about Type
Erasure, this gain in performance should give you a strong incentive to
investigate for yourself. While this is amazing and without doubt is pretty
exciting, it is important to remember where this is coming from: only due to
separating the concerns of virtual behavior and encapsulating the behavior
into a value type have we gained these optimization opportunities. We
wouldn’t have been able to achieve this if all we had was a pointer-to-base.

GUIDELINE 33: BE AWARE OF THE OPTIMIZATION
POTENTIAL OF TYPE ERASURE

Use SBO to avoid expensive copy operations for small objects.

Reduce the number of indirections by implementing virtual
dispatch manually.

Guideline 34: Be Aware of the Setup Costs of
Owning Type Erasure Wrappers
In “Guideline 32: Consider Replacing Inheritance Hierarchies with Type
Erasure” and “Guideline 33: Be Aware of the Optimization Potential of
Type Erasure”, I guided you through the thicket of implementation details
for a basic Type Erasure implementation. Yes, that was tough, but definitely
worth the effort: you have emerged stronger, wiser, and with a new,
efficient, and strongly decoupling design pattern in your toolbox. Great!

However, we have to go back into the thicket. I see you are rolling your
eyes, but there is more. And I have to admit: I lied. At least a little. Not by
telling you something incorrect, but by omission. There is one more



disadvantage of Type Erasure that you should know of. A big one. One that
you might not like at all. Sigh.

The Setup Costs of an Owning Type Erasure Wrapper
Assume for a second that Shape is a base class again, and Circle one of
many deriving classes. Then passing a Circle to a function expecting a
Shape const& would be easy and cheap ( ):

 
#include <cstdlib> 
 
class Shape { /*...*/ };  // Classic base class 
 
class Circle : public Shape { /*...*/ };  // Deriving class 
 
void useShape( Shape const& shape ) 
{ 
   shape.draw( /*...*/ ); 
} 
 
int main() 
{ 
   Circle circle{ 3.14 }; 
 
   // Automatic and cheap conversion from 'Circle const&' to 'Shape const&' 
   useShape( circle );   
 
   return EXIT_SUCCESS; 
} 

Although the Type Erasure Shape abstraction is a little different (for
instance, it always requires a drawing Strategy), this kind of conversion is
still possible:

 
#include <cstdlib> 
 
class Circle { /*...*/ };  // Nonpolymorphic geometric primitive 
 
class Shape { /*...*/ };  // Type erasure wrapper class as shown before 
 
void useShape( Shape const& shape ) 



{ 
   draw(shape); 
} 
 
int main() 
{ 
   Circle circle{ 3.14 }; 
   auto drawStrategy = []( Circle const& c ){ /*...*/ }; 
 
   // Creates a temporary 'Shape' object, involving 
   //   a copy operation and a memory allocation 
   useShape( { circle, drawStrategy } );   
 
   return EXIT_SUCCESS; 
} 

Unfortunately, it is no longer cheap. On the contrary, based on our previous
implementations, which include both the basic one and optimized ones, the
call to the useShape() function would involve a couple of potentially
expensive operations ( ):

To convert a Circle into a Shape, the compiler creates a temporary
Shape using the non-explicit, templated Shape constructor.

The call of the constructor results in a copy operation of the given
shape (not expensive for Circle, but potentially expensive for other
shapes) and the given draw Strategy (essentially free if the Strategy is
stateless, but potentially expensive, depending on what is stored inside
the object).

Inside the Shape constructor, a new shape model is created, involving a
memory allocation (hidden in the call to std::make_unique() in the
Shape constructor and definitely expensive).

The temporary (rvalue) Shape is passed by reference-to-const to the
useShape() function.

It is important to point out that this is not a specific problem of our Shape
implementation. The same problem will hit you if, for instance, you use
std::function as a function argument:



#include <cstdlib> 
#include <functional> 
 
int compute( int i, int j, std::function<int(int,int)> op ) 
{ 
   return op( i, j ); 
} 
 
int main() 
{ 
   int const i = 17; 
   int const j = 10; 
 
   int const sum = compute( i, j, [offset=15]( int x, int y ) { 
      return x + y + offset; 
   } ); 
 
   return EXIT_SUCCESS; 
}

In this example, the given lambda is converted into the std::function
instance. This conversion will involve a copy operation and might involve a
memory allocation. It entirely depends on the size of the given callable and
on the implementation of std::function. For that reason, std::function
is a different kind of abstraction than, for instance, std::string_view and
std::span. std::string_view and std::span are nonowning
abstractions that are cheap to copy because they consist of only a pointer to
the first element and a size. Because these two types perform a shallow
copy, they are perfectly suited as function parameters. std::function, on
the other hand, is an owning abstraction that performs a deep copy.
Therefore, it is not the perfect type to be used as a function parameter.
Unfortunately, the same is true for our Shape implementation.

“Oh my, I don’t like this. Not at all. That is terrible! I want my money
back!” you exclaim. I have to agree that this may be a severe issue in your
codebase. However, you understand that the underlying problem is the
owning semantics of the Shape class: on the basis of its value semantics
background, our current Shape implementation will always create a copy of
the given shape and will always own the copy. While this is perfectly in line
with all the benefits discussed in “Guideline 22: Prefer Value Semantics
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over Reference Semantics”, in this context it results in a pretty unfortunate
performance penalty. However, stay calm—there is something we can do:
for such a context, we can provide a nonowning Type Erasure
implementation.

A Simple Nonowning Type Erasure Implementation
Generally speaking, the value semantics–based Type Erasure
implementation is beautiful and perfectly adheres to the spirit of modern
C++. However, performance is important. It might be so important that
sometimes you might not care about the value semantics part, but only
about the abstraction provided by Type Erasure. In that case, you might
want to reach for a nonowning implementation of Type Erasure, despite the
disadvantage that this pulls you back into the realm of reference semantics.

The good news is that if you desire only a simple Type Erasure wrapper, a
wrapper that represents a reference-to-base, that is nonowning and trivially
copyable, then the required code is fairly simple. That is particularly true
because you have already seen how to manually implement the virtual
dispatch in “Guideline 33: Be Aware of the Optimization Potential of Type
Erasure”. With this technique, a simple, nonowning Type Erasure
implementation is just a matter of a few lines of code:

 
//---- <Shape.h> ---------------- 
 
#include <memory> 
 
class ShapeConstRef 
{ 
 public: 
   template< typename ShapeT, typename DrawStrategy > 
   ShapeConstRef( ShapeT& shape, DrawStrategy& drawer )   
      : shape_{ std::addressof(shape) } 
      , drawer_{ std::addressof(drawer) } 
      , draw_{ []( void const* shapeBytes, void const* drawerBytes ){ 
           auto const* shape = static_cast<ShapeT const*>(shapeBytes); 
           auto const* drawer = static_cast<DrawStrategy const*>(drawerBytes); 
           (*drawer)( *shape ); 
        } } 



   {} 
 
 private: 
   friend void draw( ShapeConstRef const& shape ) 
   { 
      shape.draw_( shape.shape_, shape.drawer_ ); 
   } 
 
   using DrawOperation = void( void const*,void const* ); 
 
   void const* shape_{ nullptr };     
   void const* drawer_{ nullptr };    
   DrawOperation* draw_{ nullptr };   
}; 

As the name suggests, the ShapeConstRef class represents a reference to a
const shape type. Instead of storing a copy of the given shape, it only holds
a pointer to it in the form of a void* ( ). In addition, it holds a void* to the
associated DrawStrategy ( ), and as the third data member, a function
pointer to the manually implemented virtual draw() function ( ) (see
“Guideline 33: Be Aware of the Optimization Potential of Type Erasure”).

ShapeConstRef takes its two arguments, the shape and the drawing
Strategy, both possibly cv qualified, by reference-to-non-const ( ).  In
this form, it is not possible to pass rvalues to the constructor, which
prevents any kind of lifetime issue with temporary values. This
unfortunately does not protect you from all possible lifetime issues with
lvalues but still provides a very reasonable protection.  If you want to
allow rvalues, you should reconsider. And if you’re really, really willing to
risk lifetime issues with temporaries, then you can simply take the
argument(s) by reference-to-const. Just remember that you did not get this
advice from me!

This is it. This is the complete nonowning implementation. It is efficient,
short, simple, and can be even shorter and simpler if you do not need to
store any kind of associated data or Strategy object. With this functionality
in place, you are now able to create cheap shape abstractions. This is
demonstrated in the following code example by the useShapeConstRef()
function. This function enables you to draw any kind of shape (Circles,
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Squares, etc.) with any possible drawing implementation by simply using a
ShapeConstRef as the function argument. In the main() function, we call
useShapeConstRef() by a concrete shape and a concrete drawing Strategy
(in this case, a lambda) ( ):

 
//---- <Main.cpp> ---------------- 
 
#include <Circle.h> 
#include <Shape.h> 
#include <cstdlib> 
 
void useShapeConstRef( ShapeConstRef shape ) 
{ 
   draw( shape ); 
} 
 
int main() 
{ 
   // Create a circle as one representative of a concrete shape type 
   Circle circle{ 3.14 }; 
 
   // Create a drawing strategy in the form of a lambda 
   auto drawer = []( Circle const& c ){ /*...*/ }; 
 
   // Draw the circle directly via the 'ShapeConstRef' abstraction 
   useShapeConstRef( { circle, drawer } );   
 
   return EXIT_SUCCESS; 
} 

This call triggers the desired effect, notably without any memory allocation
or expensive copy operation, but only by wrapping polymorphic behavior
around a set of pointers to the given shape and drawing Strategy.

A More Powerful Nonowning Type Erasure
Implementation
Most of the time, this simple nonowning Type Erasure implementation
should prove to be enough and fulfill all your needs. Sometimes, however,



and only sometimes, it might not be enough. Sometimes, you might be
interested in a slightly different form of Shape reference:

 
#include <Cirlce.h> 
#include <Shape.h> 
#include <cstdlib> 
 
int main() 
{ 
   // Create a circle as one representative of a concrete shape type 
   Circle circle{ 3.14 }; 
 
   // Create a drawing strategy in the form of a lambda 
   auto drawer = []( Circle const& c ){ /*...*/ }; 
 
   // Combine the shape and the drawing strategy in a 'Shape' abstraction 
   Shape shape1( circle, drawer ); 
 
   // Draw the shape 
   draw( shape1 ); 
 
   // Create a reference to the shape 
   // Works already, but the shape reference will store a pointer 
   // to the 'shape1' instance instead of a pointer to the 'circle'. 
   ShapeConstRef shaperef( shape1 );   
 
   // Draw via the shape reference, resulting in the same output 
   // This works, but only by means of two indirections! 
   draw( shaperef );   
 
   // Create a deep copy of the shape via the shape reference 
   // This is _not_ possible with the simple nonowning implementation! 
   // With the simple implementation, this creates a copy of the 'shaperef' 
   // instance. 'shape2' itself would act as a reference and there would be 
   // three indirections... sigh. 
   Shape shape2( shaperef );   
 
   // Drawing the copy will again result in the same output 
   draw( shape2 ); 
 
   return EXIT_SUCCESS; 
} 



Assuming that you have a type-erased circle called shape1, you might
want to convert this Shape instance to a ShapeConstRef ( ). With the
current implementation, this works, but the shaperef instance would hold a
pointer to the shape1 instance, instead of a pointer to the circle. As a
consequence, any use of the shaperef would result in two indirections (one
via the ShapeConstRef, and one via the Shape abstraction) ( ).
Furthermore, you might also be interested in converting a ShapeConstRef
instance to a Shape instance ( ). In that case, you might expect that a full
copy of the underlying Circle is created and that the resulting Shape
abstraction contains and represents this copy. Unfortunately, with the
current implementation, the Shape would create a copy of the
ShapeConstRef instance, and thus introduce a third indirection. Sigh.

If you need a more efficient interaction between owning and nonowning
Type Erasure wrappers, and if you need a real copy when copying a
nonowning wrapper into an owning wrapper, then I can offer you a working
solution. Unfortunately, it is more involved than the previous
implementation(s), but fortunately it isn’t not overly complex. The solution
builds on the basic Type Erasure implementation from “Guideline 32:
Consider Replacing Inheritance Hierarchies with Type Erasure”, which
includes the ShapeConcept and OnwingShapeModel classes in the detail
namespace, and the Shape Type Erasure wrapper. You will see that it just
requires a few additions, all of which you have already seen before.

The first addition happens in the ShapeConcept base class:

 
//---- <Shape.h> ---------------- 
 
#include <memory> 
#include <utility> 
 
namespace detail { 
 
class ShapeConcept 
{ 
 public: 
   // ... 
   virtual void clone( ShapeConcept* memory ) const = 0;   



}; 
 
// ... 
 
} // namespace detail 

The ShapeConcept class is extended with a second clone() function ( ).
Instead of returning a newly instantiated copy of the corresponding model,
this function is passed the address of the memory location where the new
model needs to be created.

The second addition is a new model class, the NonOwningShapeModel:

 
//---- <Shape.h> ---------------- 
 
// ... 
 
namespace detail { 
 
// ... 
 
template< typename ShapeT 
        , typename DrawStrategy > 
class NonOwningShapeModel : public ShapeConcept 
{ 
 public: 
   NonOwningShapeModel( ShapeT& shape, DrawStrategy& drawer ) 
      : shape_{ std::addressof(shape) } 
      , drawer_{ std::addressof(drawer) } 
   {} 
 
   void draw() const override { (*drawer_)(*shape_); }   
 
   std::unique_ptr<ShapeConcept> clone() const override   
   { 
      using Model = OwningShapeModel<ShapeT,DrawStrategy>; 
      return std::make_unique<Model>( *shape_, *drawer_ ); 
   } 
 
   void clone( ShapeConcept* memory ) const override   
   { 
      std::construct_at( static_cast<NonOwningShapeModel*>(memory), *this ); 
 
      // or: 



      // auto* ptr = 
      //    const_cast<void*>(static_cast<void const volatile*>(memory)); 
      // ::new (ptr) NonOwningShapeModel( *this ); 
   } 
 
 private: 
   ShapeT* shape_{ nullptr };   
   DrawStrategy* drawer_{ nullptr };   
}; 
 
// ... 
 
} // namespace detail 

The NonOwningShapeModel is very similar to the OwningShapeModel
implementation, but, as the name suggests, it does not store copies of the
given shape and strategy. Instead, it stores only pointers (  and ). Thus,
this class represents the reference semantics version of the
OwningShapeModel class. Also, NonOwningShapeModel needs to override
the pure virtual functions of the ShapeConcept class: draw() again
forwards the drawing request to the given drawing Strategy ( ), while the
clone() functions perform a copy. The first clone() function is
implemented by creating a new OwningShapeModel and copying both the
stored shape and drawing Strategy ( ). The second clone() function is
implemented by creating a new NonOwningShapeModel at the specified
address by std::construct_at() ( ).

In addition, the OwningShapeModel class needs to provide an
implementation of the new clone() function:

 
//---- <Shape.h> ---------------- 
 
// ... 
 
namespace detail { 
 
template< typename ShapeT 
        , typename DrawStrategy > 
class OwningShapeModel : public ShapeConcept 
{ 
 public: 



   // ... 
 
   void clone( ShapeConcept* memory ) const   
   { 
      using Model = NonOwningShapeModel<ShapeT const,DrawStrategy const>; 
 
      std::construct_at( static_cast<Model*>(memory), shape_, drawer_ ); 
 
      // or: 
      // auto* ptr = 
      //    const_cast<void*>(static_cast<void const volatile*>(memory)); 
      // ::new (ptr) Model( shape_, drawer_ ); 
   } 
}; 
 
// ... 
 
} // namespace detail 

The clone() function in OwningShapeModel is implemented similarly to
the implementation in the NonOwningShapeModel class by creating a new
instance of a NonOwningShapeModel by std::construct_at() ( ).

The next addition is the corresponding wrapper class that acts as a wrapper
around the external hierarchy ShapeConcept and NonOwningShapeModel.
This wrapper should take on the same responsibilities as the Shape class
(i.e., the instantiation of the NonOwningShapeModel class template and the
encapsulation of all pointer handling) but should merely represent a
reference to a const concrete shape, not a copy. This wrapper is again
given in the form of the ShapeConstRef class:

 
//---- <Shape.h> ---------------- 
 
#include <array> 
#include <cstddef> 
#include <memory> 
 
// ... 
 
class ShapeConstRef 
{ 
 public: 



   // ... 
 
 private: 
   // ... 
 
   // Expected size of a model instantiation: 
   //     sizeof(ShapeT*) + sizeof(DrawStrategy*) + sizeof(vptr) 
   static constexpr size_t MODEL_SIZE = 3U*sizeof(void*);   
 
   alignas(void*) std::array<std::byte,MODEL_SIZE> raw_;   
}; 

As you will see, the ShapeConstRef class is very similar to the Shape class,
but there are a few important differences. The first noteworthy detail is the
use of a raw_ storage in the form of a properly aligned std::byte array (
). That indicates that ShapeConstRef does not allocate dynamically, but
firmly builds on in-class memory. In this case, however, this is easily
possible, because we can predict the size of the required
NonOwningShapeModel to be equal to the size of three pointers (assuming
that the pointer to the virtual function table, the vptr, has the same size as
any other pointer) ( ).

The private section of ShapeConstRef also contains a couple of member
functions:

 
//---- <Shape.h> ---------------- 
 
// ... 
 
class ShapeConstRef 
{ 
 public: 
   // ... 
 
 private: 
   friend void draw( ShapeConstRef const& shape ) 
   { 
      shape.pimpl()->draw(); 
   } 
 
   ShapeConcept* pimpl()   
   { 



      return reinterpret_cast<ShapeConcept*>( raw_.data() ); 
   } 
 
   ShapeConcept const* pimpl() const   
   { 
      return reinterpret_cast<ShapeConcept const*>( raw_.data() ); 
   } 
 
   // ... 
}; 

We also add a draw() function as a hidden friend and, just as in the SBO
implementation in “Guideline 33: Be Aware of the Optimization Potential
of Type Erasure”, we add a pair of pimpl() functions (  and ). This will
enable us to work conveniently with the in-class std::byte array.

The second noteworthy detail is the signature function of every Type
Erasure implementation, the templated constructor:

 
//---- <Shape.h> ---------------- 
 
// ... 
 
class ShapeConstRef 
{ 
 public: 
   // Type 'ShapeT' and 'DrawStrategy' are possibly cv qualified; 
   // lvalue references prevent references to rvalues 
   template< typename ShapeT 
           , typename DrawStrategy > 
   ShapeConstRef( ShapeT& shape 
                , DrawStrategy& drawer )   
   { 
      using Model = 
         detail::NonOwningShapeModel<ShapeT const,DrawStrategy const>;   
      static_assert( sizeof(Model) == MODEL_SIZE, "Invalid size detected" );  
 

      static_assert( alignof(Model) == alignof(void*), "Misaligned detected" 
); 
 
      std::construct_at( static_cast<Model*>(pimpl()), shape_, drawer_ );   
 
      // or: 
      // auto* ptr = 



      //    const_cast<void*>(static_cast<void const volatile*>(pimpl())); 
      // ::new (ptr) Model( shape_, drawer_ ); 
   } 
 
   // ... 
 
 private: 
   // ... 
}; 

Again, you have the choice to accept the arguments by reference-to-non-
const to prevent lifetime issues with temporaries (very much
recommended!) ( ). Alternatively, you accept the arguments by reference-
to-const, which would allow you to pass rvalues but puts you at risk of
experiencing lifetime issues with temporaries. Inside the constructor, we
again first use a convenient type alias for the required type of model ( ),
before checking the actual size and alignment of the model ( ). If it does
not adhere to the expected MODEL_SIZE or pointer alignment, we create a
compile-time error. Then we construct the new model inside the in-class
memory by std::construct_at() ( ):

 
//---- <Shape.h> ---------------- 
 
// ... 
 
class ShapeConstRef 
{ 
 public: 
   // ... 
 
   ShapeConstRef( Shape& other )       { other.pimpl_->clone( pimpl() ); }   
   ShapeConstRef( Shape const& other ) { other.pimpl_->clone( pimpl() ); } 
 
   ShapeConstRef( ShapeConstRef const& other ) 
   { 
      other.pimpl()->clone( pimpl() ); 
   } 
 
   ShapeConstRef& operator=( ShapeConstRef const& other ) 
   { 
      // Copy-and-swap idiom 
      ShapeConstRef copy( other ); 



      raw_.swap( copy.raw_ ); 
      return *this; 
   } 
 
   ~ShapeConstRef() 
   { 
      std::destroy_at( pimpl() ); 
      // or: pimpl()->~ShapeConcept(); 
   } 
 
   // Move operations explicitly not declared   
 
 private: 
   // ... 
}; 

In addition to the templated ShapeConstRef constructor, ShapeConstRef
offers two constructors to enable a conversion from Shape instances ( ).
While these are not strictly required, as we could also create an instance of
a NonOwningShapeModel for a Shape, these constructors directly create a
NonOwningShapeModel for the corresponding, underlying shape type, and
thus shave off one indirection, which contributes to better performance.
Note that to make these constructors work, ShapeConstRef needs to
become a friend of the Shape class. Don’t worry, though, as this is a good
example for friendship: Shape and ShapeConstRef truly belong together,
work hand in hand, and are even provided in the same header file.

The last noteworthy detail is the fact that the two move operations are
neither explicitly declared nor deleted ( ). Since we have explicitly defined
the two copy operations, the compiler neither creates nor deletes the two
move operations, thus they are gone. Completely gone in the sense that
these two functions never participate in overload resolution. And yes, this is
different from explicitly deleting them: if they were deleted, they would
participate in overload resolution, and if selected, they would result in a
compilation error. But with these two functions gone, when you try to move
a ShapeConstRef, the copy operations would be used instead, which are
cheap and efficient, since ShapeConstRef only represents a reference.
Thus, this class deliberately implements the Rule of 3.

https://oreil.ly/hYYiq


We are almost finished. The last detail is one more addition, one more
constructor in the Shape class:

//---- <Shape.h> ---------------- 
 
// ... 
 
class Shape 
{ 
 public: 
   // ... 
 
   Shape( ShapeConstRef const& other ) 
      : pimpl_{ other.pimpl()->clone() } 
   {} 
 
 private: 
   // ... 
}

Via this constructor, an instance of Shape creates a deep copy of the shape
stored in the passed ShapeConstRef instance. Without this constructor,
Shape stores a copy of the ShapeConstRef instance and thus acts as a
reference itself.

In summary, both nonowning implementations, the simple and the more
complex one, give you all the design advantages of the Type Erasure design
pattern but at the same time pull you back into the realm of reference
semantics, with all its deficiencies. Hence, utilize the strengths of this
nonowning form of Type Erasure, but also be aware of the usual lifetime
issues. Consider it on the same level as std::string_view and
std::span. All of these serve as very useful tools for function arguments,
but do not use them to store anything for a longer period, for instance in the
form of a data member. The danger of lifetime-related issues is just too
high.



GUIDELINE 34: BE AWARE OF THE SETUP COSTS OF
OWNING TYPE ERASURE WRAPPERS

Keep in mind that the setup of owning Type Erasure wrappers may
involve copy operations and allocations.

Be aware of nonowning Type Erasure, but also understand its
reference semantics deficiencies.

Prefer simple Type Erasure implementations, but know their limits.

Prefer to use nonowning Type Erasure for function arguments but
not for data members or return types.

1  Yes, I consider the manual use of std::unique_ptr manual lifetime management. But of
course it could be much worse if we would not reach for the power of RAII.

2  The term Type Erasure is heavily overloaded, as it is used in different programming languages
and for many different things. Even within the C++ community, you hear the term being used
for various purposes: you might have heard it being used to denote void*, pointers-to-base,
and std::variant. In the context of software design, I consider this a very unfortunate issue. I
will address this issue at the end of this guideline.

3  Sean Parent, “Inheritance Is the Base Class of Evil,” GoingNative 2013, YouTube.

4  Kevlin Henney, “Valued Conversions,” C++ Report, July-August 2000, CiteSeer.

5  For an introduction to std::function, see “Guideline 23: Prefer a Value-Based
Implementation of Strategy and Command”.

6  The placement of ShapeConcept and OwningShapeModel in a namespace is purely an
implementation detail of this example implementation. Still, as you will see in “Guideline 34:
Be Aware of the Setup Costs of Owning Type Erasure Wrappers”, this choice will come in
pretty handy. Alternatively, these two classes can be implemented as nested classes. You will
see examples of this in “Guideline 33: Be Aware of the Optimization Potential of Type
Erasure”.

7  Refer to “Guideline 31: Use External Polymorphism for Nonintrusive Runtime
Polymorphism” for the implementation based on std::function.

8  Many thanks to Arthur O’Dwyer for providing this example.

9  Again, please don’t consider these performance numbers the perfect truth. These are the
performance results on my machine and my implementation. Your results will differ for sure.

https://oreil.ly/COYs2
https://oreil.ly/BPCjV


However, the takeaway is that Type Erasure performs really well and might perform even
better if we take the many optimization options into account (see “Guideline 33: Be Aware of
the Optimization Potential of Type Erasure”).

10  Eric Niebler on Twitter, June 19, 2020.

11  For an introduction of std::variant, see “Guideline 17: Consider std::variant for
Implementing Visitor”.

12  You should avoid going too deep, though, as you probably remember what happened to the
dwarves of Moria who dug too deep…

13  Alternatively, you could use an array of bytes, e.g., std::byte[Capacity] or
std::aligned_storage. The advantage of std::array is that it enables you to copy the
buffer (if that is applicable!).

14  Note that the choice for the default arguments for Capacity and Alignment are reasonable
but still arbitrary. You can, of course, use different defaults that best fit the properties of the
expected actual types.

15  You might not have seen a placement new before. If that’s the case, rest assured that this form
of new doesn’t perform any memory allocation, but only calls a constructor to create an object
at the specified address. The only syntactic difference is that you provide an additional pointer
argument to new.

16  As a reminder, since you might not see this syntax often: the template keyword in the
constructor is necessary because we are trying to call a function template on a dependent name
(a name whose meaning depends on a template parameter). Therefore, you have to make it
clear to the compiler that the following is the beginning of a template argument list and not a
less-than comparison.

17  Some people consider function pointers to be the best feature of C++. In his lightning talk,
“The Very Best Feature of C++”, James McNellis demonstrates their syntactic beauty and
enormous flexibility. Please do not take this too seriously, though, but rather as a humorous
demonstration of a C++ imperfection.

18  At the time of writing, there is an active proposal for the std::function_ref type, a
nonowning version of std::function.

19  The term cv qualified refers to the const and volatile qualifiers.

20  For a reminder about lvalues and rvalues, refer to Nicolai Josuttis’s book on move semantics:
C++ Move Semantics - The Complete Guide.
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https://oreil.ly/nE5SK
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Chapter 9. The Decorator
Design Pattern

This chapter is dedicated to another classic design pattern: the Decorator
design pattern. Over the years, Decorator has proven to be one of the most
useful design patterns when it comes to combining and reusing different
implementations. So it doesn’t come as a surprise that it is commonly used,
even for one of the most impressive reworks of a C++ Standard Library
feature. My primary objective in this chapter will be to give you a very
good idea why, and when, Decorator is a great choice for designing
software. Additionally, I will show you the modern, more value-based
forms of Decorator.

In “Guideline 35: Use Decorators to Add Customization Hierarchically”,
we will dive into the design aspects of the Decorator design pattern. You
will see when it is the right design choice and which benefits you’re gaining
by using it. Additionally, you will learn about differences compared to other
design patterns and its potential shortcomings.

In “Guideline 36: Understand the Trade-off Between Runtime and Compile
Time Abstraction”, we will take a look at two more implementations of the
Decorator design pattern. Although both implementations will be firmly
rooted in the realm of value semantics, the first one will be based on static
polymorphism, while the second one will be based on dynamic
polymorphism. Even though both have the same intent and thus implement
Decorator, the contrast between these two will give you an impression of
the vastness of the design space for design patterns.

Guideline 35: Use Decorators to Add
Customization Hierarchically



Ever since you solved the design problem of your team’s 2D graphics tool
by proposing a solution based on the Strategy design pattern (remember
“Guideline 19: Use Strategy to Isolate How Things Are Done”), your
reputation as design pattern expert has spread across the company.
Therefore, it does not come as a surprise that other teams are seeking you
out for guidance. One day, two developers of your companies merchandise
management system come to your office and ask for your help.

Your Coworkers’ Design Issue
The team of the two developers is dealing with a lot of different Items (see
Figure 9-1). All of these items have one thing in common: they have a
price() tag. The two developers try to explain their problem by means of
two items taken from the C++ merchandise shop: a class representing a
C++ book (the CppBook class) and a C++ conference ticket (the
ConferenceTicket class).



Figure 9-1. The initial Item inheritance hierarchy

As the developers sketch their problem, you start to understand that their
problem appears to be the many different ways to modify a price. Initially,
they tell you, they only had to take taxes into account. For that reason, the
Item base class was equipped with a protected data member to represent
the tax rate:

//---- <Money.h> ---------------- 
 
class Money { /*...*/ }; 
 
Money operator*( Money money, double factor ); 
Money operator+( Money lhs, Money rhs ); 
 



 
//---- <Item.h> ---------------- 
 
#include <Money.h> 
 
class Item 
{ 
 public: 
   virtual ~Item() = default; 
 
   virtual Money price() const = 0; 
   // ... 
 
 protected: 
   double taxRate_; 
};

This apparently worked well for some time, until one day, when they were
asked to also take different rates of discount into account. This apparently
required a lot of effort to refactor the large amount of the existing classes
for their numerous different items. You can easily imagine that this was
necessary because all derived classes were accessing the protected data
members. “Yes, you should always design for change…” you think to
yourself.

They continue by admitting to their unfortunate misdesign. Of course they
should have done a better job of encapsulating the tax rates in the Item base
class. However, along with this realization came the understanding that
when representing price modifiers by data members in the base class, any
new kind of price modifier would always be an intrusive action and would
always directly affect the Item class. For that reason, they started to think
about how to avoid this kind of major refactoring in the future and how to
enable the easy addition of new modifiers. “That’s the way to go!” you
think to yourself. Unfortunately, the first approach that came to their mind
was to factor out the different kinds of price modifiers by means of an
inheritance hierarchy (see Figure 9-2).

1



Figure 9-2. The extended Item inheritance hierarchy

Instead of encapsulating the tax and discount values inside the base class,
these modifiers are factored out into derived classes, which perform the



required price adaptation. “Uh-oh…” you start to think. Apparently your
look already gives away that you are not particularly fond of this idea, and
so they are quick to tell you that they have already discarded the idea.
Obviously they have realized on their own that this would cause even more
problems: this solution would quickly cause an explosion of types and
would provide only poor reuse of functionality. Unfortunately, a lot of code
would be doubled, since for every specific Item, the code for taxes and
discounts had to be duplicated. Most troublesome, however, would be the
handling of Items that are affected both by tax and some sort of discount:
they neither liked the approach to provide classes to handle both, nor did
they want to introduce another layer in the inheritance hierarchy (see
Figure 9-3).





Figure 9-3. The problematic Item inheritance hierarchy

Apparently, and surprising for them, they couldn’t deal with the price
modifiers in the base class or in the derived classes by means of direct
inheritance. However, before you have the opportunity to make any
comments about separating concerns, they explain that they have recently
heard about your Strategy solution. This finally gave them an idea how to
properly refactor the problem (see Figure 9-4).

By extracting the price modifiers into a separate hierarchy, and by
configuring Items upon construction by means of a PriceStrategy, they
had finally found a working solution to nonintrusively add new price
modifiers, which will save them a lot of refactoring work. “Well, this is the
benefit of separating concerns and favoring composition over inheritance,”
you think to yourself.  And aloud you ask, “This is great, I’m really happy
for you. Everything seems to work now, you’ve figured it out on your own!
Why exactly are you here?”

2



Figure 9-4. The Strategy-based Item inheritance hierarchy

They tell you that your Strategy solution is by far the best approach they
have (thankful looks included). However, they admit that they are not
entirely happy with the approach. From their point of view, two problems
remain and, of course, they are hoping that you have an idea how to fix
them. The first issue they see is that every Item instance needs a Strategy
class, even if no price modifier applies. While they agree that this can be



solved by some kind of null object, they feel that there should be a simpler
solution:

class PriceStrategy 
{ 
 public: 
   virtual ~PriceStrategy() = default; 
   virtual Money update( Money price ) const = 0; 
   // ... 
}; 
 
class NullPriceStrategy : public PriceStrategy 
{ 
 public: 
   Money update( Money price ) const override { return price; } 
};

The second problem they have appears to be a little more difficult to solve.
Obviously they are interested in combining different kinds of modifiers
(e.g., Discount and Tax into DiscountAndTax). Unfortunately, they
experience some code duplication in their current implementation. For
instance, both the Tax and the DiscountAndTax classes contain tax-related
computations. And while right now, with only the two modifiers, there are
reasonable solutions at hand to cope with the duplication, they are
anticipating problems when adding more modifiers and arbitrary
combinations of these. Therefore they are wondering if there is another,
better solution for dealing with different kinds of price modifiers.

This is indeed an intriguing problem, and you are happy to have taken the
time to help them. They are absolutely correct: the Strategy design pattern
is not the right solution for this problem. While Strategy is a great solution
to remove dependencies on the complete implementation details of a
function and to handle different implementations gracefully, it does not
enable the easy combination and reuse of different implementations.
Attempting to do this would quickly result in an undesirably complex
Strategy inheritance hierarchy.

What they need for their problem appears to be more like a hierarchical
form of Strategy, a form that decouples the different price modifiers but

3
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also allows for a very flexible combination of them. Hence, one key to
success is a consequent application of the separation of concerns: any rigid,
manually encoded combination in the spirit of a DiscountAndTax class
would be prohibitive. However, the solution should also be nonintrusive to
enable them to implement new ideas at any time without the need to modify
existing code. And finally, it should not be necessary to handle a default
case by some artificial null object. Instead, it would be more reasonable to
consequently build on composition instead of inheritance and implement a
price modifier in the form of a wrapper. With this realization, you start to
smile. Yes, there is just the right design pattern for this purpose: what your
two guests need is an implementation of the Decorator design pattern.

The Decorator Design Pattern Explained
The Decorator design pattern also originates from the GoF book. Its
primary focus is the flexible combination of different pieces of functionality
through composition:

THE DECORATOR DESIGN PATTERN
Intent: “Attach additional responsibilities to an object dynamically. Decorators provide a
flexible alternative to subclassing for extending functionality.”

Figure 9-5 shows the UML diagram for the given Item problem. As before,
the Item base class represents the abstraction from all possible items. The
deriving CppBook class, on the other hand, acts as a representative for
different implementations of Item. The problem in this hierarchy is the
difficult addition of new modifiers for the existing price() function(s). In
the Decorator design pattern, this addition of new “responsibilities” is
identified as a variation point and extracted in the form of the
DecoratedItem class. This class is a separate, special implementation of
the Item base class and represents an added responsibility for any given
item. On the one hand, a DecoratedItem derives from Item and hence
must adhere to all expectations of the Item abstraction (see “Guideline 6:
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Adhere to the Expected Behavior of Abstractions”). On the other hand, it
also contains an Item (either through composition or aggregation). Due to
that, a DecoratedItem acts as a wrapper around each and every item,
potentially one that itself can extend the functionality. For that reason, it
provides the foundation for a hierarchical application of modifiers. Two
possible modifiers are represented by the Discounted class, which
represents a discount for a specific item, and the Taxed class, which
represents some kind of tax.5





Figure 9-5. The UML representation of the Decorator design pattern

By introducing the DecoratedItem class and separating the aspect that’s
required to change, you adhere to the SRP. By separating this concern and
therefore allowing the easy addition of new price modifiers, you also adhere
to the Open-Closed Principle (OCP). Due to the hierarchical, recursive
nature of the DecoratedItem class, and due to the gained ability to reuse
and combine different modifiers easily, you also follow the advice of the
Don’t Repeat Yourself (DRY) principle. Last but not least, because of the
wrapper approach of Decorator, there’s no need to define any default
behavior in the form of a null object. Any Item that does not require a
modifier can be used as is.

Figure 9-6 illustrates the dependency graph of the Decorator design pattern.
In this figure, the Item class resides on the highest level of the architecture.
All other classes depend on it, including the DecoratedItem class, which
resides one level below. Of course, this is not a requirement: it’s perfectly
acceptable if both the Item and the DecoratedItem are introduced on the
same architectural level. However, this example demonstrates that it’s
always possible (anytime, anywhere) to introduce a new Decorator without
needing to modify existing code. The concrete types of Items are
implemented on the lowest level of the architecture. Note that there is no
dependency between these items: all items, including modifiers like
Discounted, can be introduced independently by anyone at any time and,
due to the structure of Decorator, be flexibly and arbitrarily combined.





Figure 9-6. Dependency graph for the Decorator design pattern

A Classic Implementation of the Decorator Design
Pattern
Let’s take a look at a complete, GoF-style implementation of the Decorator
design pattern by means of the given Item example:

//---- <Item.h> ---------------- 
 
#include <Money.h> 
 
class Item 
{ 
 public: 
   virtual ~Item() = default; 
   virtual Money price() const = 0; 
};

The Item base class represents the abstraction for all possible items. The
only requirement is defined by the pure virtual price() function, which
can be used to query for the price of the given item. The DecoratedItem
class represents one possible implementation of the Item class ( ):

 
//---- <DecoratedItem.h> ---------------- 
 
#include <Item.h> 
#include <memory> 
#include <stdexcept> 
#include <utility> 
 
class DecoratedItem : public Item   
{ 
 public: 
   explicit DecoratedItem( std::unique_ptr<Item> item )   
      : item_( std::move(item) ) 
   { 
      if( !item_ ) { 
         throw std::invalid_argument( "Invalid item" ); 
      } 
   } 



 
 protected: 
   Item&       item()       { return *item_; }   
   Item const& item() const { return *item_; } 
 
 private: 
   std::unique_ptr<Item> item_;   
}; 

A DecoratedItem derives from the Item class but also contains an item_ (
). This item_ is specified via the constructor, which accepts any non-null

std::unique_ptr to another Item ( ). Note that this DecoratedItem class
is still abstract, since the pure virtual price() function is not yet defined.
DecoratedItem provides only the necessary functionality to store an Item
and to access the Item via protected member functions ( ).

Equipped with these two classes, it’s possible to implement concrete Items:

 
//---- <CppBook.h> ---------------- 
 
#include <Item.h> 
#include <string> 
#include <utility> 
 
class CppBook : public Item   
{ 
 public: 
   CppBook( std::string title, Money price ) 
      : title_{ std::move(title) } 
      , price_{ price } 
   {} 
 
   std::string const& title() const { return title_; } 
   Money price() const override { return price_; } 
 
 private: 
   std::string title_{}; 
   Money price_{}; 
}; 
 
 
//---- <ConferenceTicket.h> ---------------- 
 



#include <Item.h> 
#include <string> 
#include <utility> 
 
class ConferenceTicket : public Item   
{ 
 public: 
   ConferenceTicket( std::string name, Money price ) 
      : name_{ std::move(name) } 
      , price_{ price } 
   {} 
 
   std::string const& name() const { return name_; } 
   Money price() const override { return price_; } 
 
 private: 
   std::string name_{}; 
   Money price_{}; 
}; 

The CppBook and ConferenceTicket classes represent possible specific
Item implementations (  and ). While a C++ book is represented by
means of the title of the book, a C++ conference is represented by means of
the name of the conference. Most importantly, both classes override the
price() function by returning the specified price_.

Both CppBook and ConferenceTicket are oblivious to any kind of tax or
discount. But obviously, both kinds of Item are potentially subject to both.
These price modifiers are implemented by means of the Discounted and
Taxed classes:

 
//---- <Discounted.h> ---------------- 
 
#include <DecoratedItem.h> 
 
class Discounted : public DecoratedItem 
{ 
 public: 
   Discounted( double discount, std::unique_ptr<Item> item )   
      : DecoratedItem( std::move(item) ) 
      , factor_( 1.0 - discount ) 
   { 
      if( !std::isfinite(discount) || discount < 0.0 || discount > 1.0 ) { 



         throw std::invalid_argument( "Invalid discount" ); 
      } 
   } 
 
   Money price() const override 
   { 
      return item().price() * factor_;   
   } 
 
 private: 
   double factor_; 
}; 

The Discounted class ( ) is initialized by passing a std::unique_ptr to
an Item and a discount value, represented by a double value in the range of
0.0 to 1.0. While the given Item is immediately passed to the
DecoratedItem base class, the given discount value is used to compute a
discount factor_. This factor is used in the implementation of the price()
function to modify the price of the given item ( ). This can either be a
specific item like CppBook or ConferenceTicket or any Decorator like
Discounted, which in turn modifies the price of another Item. Thus, the
price() function is the point where the hierarchical structure of Decorator
is fully exploited.

 
//---- <Taxed.h> ---------------- 
 
#include <DecoratedItem.h> 
 
class Taxed : public DecoratedItem 
{ 
 public: 
   Taxed( double taxRate, std::unique_ptr<Item> item )   
      : DecoratedItem( std::move(item) ) 
      , factor_( 1.0 + taxRate ) 
   { 
      if( !std::isfinite(taxRate) || taxRate < 0.0 ) { 
         throw std::invalid_argument( "Invalid tax" ); 
      } 
   } 
 
   Money price() const override 
   { 



      return item().price() * factor_; 
   } 
 
 private: 
   double factor_; 
}; 

The Taxed class is very similar to the Discounted class. The major
difference is the evaluation of a tax-related factor in the constructor ( ).
Again, this factor is used in the price() function to modify the price of the
wrapped Item.

All of this functionality is put together in the main() function:

 
#include <ConferenceTicket.h> 
#include <CppBook.h> 
#include <Discounted.h> 
#include <Taxed.h> 
#include <cstdlib> 
#include <memory> 
 
int main() 
{ 
   // 7% tax: 19*1.07 = 20.33 
   std::unique_ptr<Item> item1(   
      std::make_unique<Taxed>( 0.07, 
         std::make_unique<CppBook>( "Effective C++", 19.0 ) ) ); 
 
   // 20% discount, 19% tax: (999*0.8)*1.19 = 951.05 
   std::unique_ptr<Item> item2(   
      std::make_unique<Taxed>( 0.19, 
         std::make_unique<Discounted>( 0.2, 
            std::make_unique<ConferenceTicket>( "CppCon", 999.0 ) ) ) ); 
 
   Money const totalPrice1 = item1->price();  // Results in 20.33 
   Money const totalPrice2 = item2->price();  // Results in 951.05 
 
   // ... 
 
   return EXIT_SUCCESS; 
} 



As a first Item, we create a CppBook. Let’s assume that this book is subject
to a 7% tax, which is applied by means of wrapping a Taxed decorator
around the item. The resulting item1 therefore represents a taxed C++ book
( ). As a second Item, we create a ConferenceTicket instance, which
represents CppCon. We were lucky to get one of the early-bird tickets,
which means that we are granted a discount of 20%. This discount is
wrapped around the ConferenceTicket instance by means of the
Discounted class. The ticket is also subject to 19% tax, which, as before, is
applied via the Taxed decorator. Hence, the resulting item2 represents a
discounted and taxed C++ conference ticket ( ).

A Second Decorator Example
Another, impressive example that shows the benefits of the Decorator
design pattern can be found in the C++17 rework of the STL allocators.
Since the allocators’ implementation is based on Decorator, it’s possible to
create arbitrarily complex hierarchies of allocators, which fulfill even the
most special of memory requirements. Consider, for instance, the following
example using a std::pmr::monotonic_buffer_resource ( ):

 
#include <array> 
#include <cstddef> 
#include <cstdlib> 
#include <memory_resource> 
#include <string> 
#include <vector> 
 
int main() 
{ 
   std::array<std::byte,1000> raw;  // Note: not initialized! 
 
   std::pmr::monotonic_buffer_resource 
      buffer{ raw.data(), raw.size(), std::pmr::null_memory_resource() };  
 
   std::pmr::vector<std::pmr::string> strings{ &buffer }; 
 
   strings.emplace_back( "String longer than what SSO can handle" ); 
   strings.emplace_back( "Another long string that goes beyond SSO" ); 
   strings.emplace_back( "A third long string that cannot be handled by SSO" 
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); 
 
   // ... 
 
   return EXIT_SUCCESS; 
} 

The std::pmr::monotonic_buffer_resource is one of several available
allocators in the std::pmr namespace. In this example, it’s configured such
that whenever the strings vector asks for memory, it will dispense only
chunks of the given byte array raw. Memory requests that cannot be
handled, for instance because the buffer is out of memory, are dealt with
by throwing a std::bad_alloc exception. This behavior is specified by
passing a std::pmr::null_memory_resource during construction. There
are many other possible applications for a
std::pmr::monotonic_buffer_resource, though. For instance, it would
also be possible to build on dynamic memory and to let it reallocate
additional chunks of memory via new and delete by means of
std::pmr::new_delete_resource() ( ):

 
// ... 
 
int main() 
{ 
   std::pmr::monotonic_buffer_resource 
      buffer{ std::pmr::new_delete_resource() };   
 
   // ... 
} 

This flexibility and hierarchical configuration of allocators is made possible
by means of the Decorator design pattern. The std::pmr:: 
monotonic_buffer_resource is derived from the
std::pmr::memory_resource base class but, at the same time, also acts as
a wrapper around another allocator derived from
std::pmr::memory_resource. The upstream allocator, which is used
whenever the buffer goes out of memory, is specified on construction of a
std::pmr::monotonic_buffer_resource.
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Most impressive, however, is that you can easily and nonintrusively
customize the allocation strategy. That might, for instance, be interesting to
enable you to deal with requests for large chunks of memory differently
than requests for small chunks. All you have to do is to provide your own,
custom allocator. Consider the following sketch of a CustomAllocator:

 
//---- <CustomAllocator.h> ---------------- 
 
#include <cstdlib> 
#include <memory_resource> 
 
class CustomAllocator : public std::pmr::memory_resource   
{ 
 public: 
   CustomAllocator( std::pmr::memory_resource* upstream )   
      : upstream_{ upstream } 
   {} 
 
 private: 
   void* do_allocate( size_t bytes, size_t alignment ) override;   
 
   void do_deallocate( void* ptr, [[maybe_unused]] size_t bytes,   
                       [[maybe_unused]] size_t alignment ) override; 
 
   bool do_is_equal( 
      std::pmr::memory_resource const& other ) const noexcept override;   
 
   std::pmr::memory_resource* upstream_{};   
}; 

To be recognized as a C++17 allocator, the CustomAllocator class derives
from the std::pmr::memory_resource class, which represents the set of
requirements for all C++17 allocators ( ). Coincidentally, the
CustomAllocator also owns a pointer to a std::pmr::memory_resource
( ), which is initialized via its constructor ( ).

The set of requirements for C++17 allocators consists of the virtual
functions do_allocate(), do_deallocate(), and do_is_equal(). The
do_allocate() function is responsible for acquiring memory, potentially
via its upstream allocator ( ), while the do_deallocate() function is



called whenever memory needs to be given back ( ). Last but not least, the
do_is_equal() function is called whenever the equality of two allocators
needs to be checked ( ).

By just introducing the CustomAllocator and without the need to change
any other code, in particular in the Standard Library, the new kind of
allocator can be easily plugged in between the
std::pmr::monotonic_buffer_resource and the
std::pmr::new_delete_resource() ( ), thus allowing you to
nonintrusively extend the allocation behavior:

 
// ... 
#include <CustomAllocator.h> 
 
int main() 
{ 
   CustomAllocator custom_allocator{ std::pmr::new_delete_resource() }; 
 
   std::pmr::monotonic_buffer_resource buffer{ &custom_allocator };   
 
   // ... 
} 

Comparison Between Decorator, Adapter, and Strategy
With the names Decorator and Adapter, these two design patterns sound
like they have a similar purpose. On closer examination, however, these two
patterns are very different and hardly related at all. The intent of the
Adapter design pattern is to adapt and change a given interface to an
expected interface. It is not concerned about adding any functionality but
only about mapping one set of functions onto another (see also “Guideline
24: Use Adapters to Standardize Interfaces”). The Decorator design pattern,
on the other hand, preserves a given interface and isn’t at all concerned
about changing it. Instead, it provides the ability to add responsibilities and
to extend and customize an existing set of functions.

The Strategy design pattern is much more like Decorator. Both patterns
provide the ability to customize functionality. However, both patterns are
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intended for different applications and therefore provide different benefits.
The Strategy design pattern is focused on removing the dependencies on the
implementation details of a specific functionality and enables you to define
these details from the outside. Thus from this perspective, it represents the
core—the “guts”—of this functionality. This form makes it particularly
suited to represent different implementations and to switch between them
(see “Guideline 19: Use Strategy to Isolate How Things Are Done”). In
comparison, the Decorator design pattern is focused on removing the
dependency between attachable pieces of implementation. Due to its
wrapper form, Decorator represents the “skin” of a functionality.  In this
form, it is particularly well suited to combine different implementations,
which enables you to augment and extend functionality, rather than
replacing it or switching between implementations.

Obviously, both Strategy and Decorator have their individual strengths and
should be selected accordingly. However, it’s also possible to combine these
two design patterns to gain the best of both worlds. For instance, it would
be possible to implement Items in terms of the Strategy design patterns but
allow for a more fine-grained configuration of Strategy by means of
Decorator:

class PriceStrategy 
{ 
 public: 
   virtual ~PriceStrategy() = default; 
   virtual Money update( Money price ) const = 0; 
   // ... 
}; 
 
class DecoratedPriceStrategy : public PriceStrategy 
{ 
 public: 
   // ... 
 private: 
   std::unique_ptr<PriceStrategy> priceModifier_; 
}; 
 
class DiscountedPriceStrategy : public DecoratedPriceStrategy 
{ 
 public: 
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   Money update( Money price ) const override; 
   // ... 
};

This combination of design patterns is particularly interesting if you already
have a Strategy implementation in place: while Strategy is intrusive and
requires the modification of a class, it’s always possible to nonintrusively
add a Decorator such as the DecoratedPriceStrategy class. But of course
it depends: whether or not this is the right solution is something you’ll have
to decide on a case-by-case basis.

Analyzing the Shortcomings of the Decorator Design
Pattern
With its ability to hierarchically extend and customize behavior, the
Decorator design pattern is clearly one of the most valuable and flexible
patterns in the catalogue of design patterns. However, despite its benefits, it
also comes with a couple of disadvantages. First and foremost, the
flexibility of a Decorator comes with a price: every level in a given
hierarchy adds one level of indirection. As a specific example, in the object-
oriented implementation of the Item hierarchy, this indirection comes in the
form of one virtual function call per Decorator. Thus an extensive use of
Decorators may incur a potentially significant performance overhead.
Whether or not this possible performance penalty poses a problem depends
on the context. You’ll have to decide from case to case using benchmarks to
determine whether the flexibility and the structural aspects of Decorator
outweigh the performance problem.

Another shortcoming is the potential danger of combining Decorators in a
nonsensical way. For instance, it’s easily possible to wrap a Taxed
Decorator around another Taxed Decorator or to apply a Discounted on an
already-taxed Item. Both scenarios would make your government happy
but still should never happen and therefore should be avoided by design.
This rational is nicely expressed by Scott Meyers’s universal design
principle:8



Make interfaces easy to use correctly and hard to use incorrectly.

Thus the enormous flexibility of Decorators is extraordinary, but can also
be dangerous (depending on the scenario, of course). Since in this scenario
taxes appear to play a special role, it seems to be very reasonable not to deal
with them as Decorator, but differently. Since in reality taxes turn out to be
a rather complex topic, it appears to be reasonable to separate this concern
via the Strategy design pattern:

 
//---- <TaxStrategy.h> ---------------- 
 
#include <Money.h> 
 
class TaxStrategy   
{ 
 public: 
   virtual ~TaxStrategy() = default; 
   virtual Money applyTax( Money price ) const = 0; 
   // ... 
}; 
 
 
//---- <TaxedItem.h> ---------------- 
 
#include <Money.h> 
#include <TaxStrategy.h> 
#include <memory> 
 
class TaxedItem 
{ 
 public: 
   explicit TaxedItem( std::unique_ptr<Item> item 
                     , std::unique_ptr<TaxStrategy> taxer )   
      : item_( std::move(item) ) 
      , taxer_( std::move(taxer) ) 
   { 
      // Check for a valid item and tax strategy 
   } 
 
   Money netPrice() const  // Price without taxes   
   { 
      return price(); 
   } 
 



   Money grossPrice() const  // Price including taxes   
   { 
      return taxer_.applyTax( item_.price() ); 
   } 
 
 private: 
   std::unique_ptr<Item> item_; 
   std::unique_ptr<TaxStrategy> taxer_; 
}; 

The TaxStrategy class represents the many different ways to apply taxes
to an Item ( ). Such a TaxStrategy is combined with an Item in the
TaxedItem class ( ). Note that TaxedItem is not an Item itself and
therefore cannot be decorated by means of another Item. It therefore serves
as a kind of terminating Decorator, which can only be applied as the very
last decorator. It also does not provide a price() function: instead, it
provides the netPrice() ( ) and grossPrice() ( ) functions to enable
queries for both the price including taxes and the original price of the
wrapped Item.

The only other problem that you might see is the reference semantics–based
implementation of the Decorator design pattern: lots of pointers, including
nullptr checks and the danger of dangling pointers, explicit lifetime
management by means of std::unique_ptr and std::make_unique(),
and the many small, manual memory allocations. However, luckily you still
have an ace up your sleeve and can show them how to implement
Decorators based on value semantics (see the following guideline).

To summarize, the Decorator design pattern is one of the essential design
patterns and despite some drawbacks will prove to be a very valuable
addition to your toolbox. Just make sure you’re not too excited about
Decorator and start to use it for everything. After all, for every pattern there
is a thin line between good use and overuse.
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GUIDELINE 35: USE DECORATORS TO ADD
CUSTOMIZATION HIERARCHICALLY

Understand that inheritance is rarely the answer.

Apply the Decorator design pattern with the intent to
nonintrusively and hierarchically extend and customize behavior.

Consider Decorators for combining and reusing independent
pieces of behavior.

Understand the difference between the Decorator, Adapter, and
Strategy design patterns.

Utilize the extreme flexibility of Decorators, but know its
shortcomings.

Avoid nonsensical Decorators, but prefer design that is easy to use
correctly.

Guideline 36: Understand the Trade-off
Between Runtime and Compile Time
Abstraction
In “Guideline 35: Use Decorators to Add Customization Hierarchically”, I
introduced you to the Decorator design pattern and hopefully gave you a
strong incentive to add this design pattern to your toolbox. However, so far
I have illustrated Decorator only by means of classic, object-oriented
implementations and again not followed the advice of “Guideline 22: Prefer
Value Semantics over Reference Semantics”. Since I assume that you are
eagerly waiting to see how to implement Decorator based on value
semantics, it’s time to show you two possible approaches. Yes, two
approaches: I will make up for the deferral by demonstrating two very
different implementations. Both are firmly based on value semantics, but in



comparison, they are almost on opposite sides of the design space. While
the first approach will be an implementation based on static polymorphism,
which enables you to exploit all compile-time information you may have,
the second approach will rather exploit all the runtime advantages of
dynamic polymorphism. Both approaches have their merits but, of course,
also their characteristic demerits. Therefore, these examples will nicely
demonstrate the broadness of design choices available to you.

A Value-Based Compile Time Decorator
Let’s start with the Decorator implementation based on static
polymorphism. “I assume that this will again be very heavy on templates,
right?” you ask. Yes, I will use templates as the primary abstraction
mechanism, and yes, I will use a C++20 concept and even forwarding
references. But no, I will try not to make it particularly heavy on templates.
On the contrary, the major focus still lies on the design aspects of the
Decorator design pattern and the goal to make it easy to add new kinds of
Decorators and new kinds of regular items. One such item is the
ConferenceTicket class:

//---- <ConferenceTicket.h> ---------------- 
 
#include <Money.h> 
#include <string> 
#include <utility> 
 
class ConferenceTicket 
{ 
 public: 
   ConferenceTicket( std::string name, Money price ) 
      : name_{ std::move(name) } 
      , price_{ price } 
   {} 
 
   std::string const& name() const { return name_; } 
   Money price() const { return price_; } 
 
 private: 
   std::string name_; 



   Money price_; 
};

The ConferenceTicket perfectly fulfills the expectations of a value type:
there is no base class involved and there are no virtual functions. This
indicates that items are no longer decorated via pointer-to-base, but instead
by means of composition, or alternatively, by means of direct non-public
inheritance. Two examples for this are the following implementations of the
Discounted and Taxed classes:

 
//---- <PricedItem.h> ---------------- 
 
#include <Money.h> 
 
template< typename T > 
concept PricedItem =   
   requires ( T item ) { 
      { item.price() } -> std::same_as<Money>; 
   }; 
 
 
//---- <Discounted.h> ---------------- 
 
#include <Money.h> 
#include <PricedItem.h> 
#include <utility> 
 
template< double discount, PricedItem Item > 
class Discounted  // Using composition   
{ 
 public: 
   template< typename... Args > 
   explicit Discounted( Args&&... args ) 
      : item_{ std::forward<Args>(args)... } 
   {} 
 
   Money price() const { 
      return item_.price() * ( 1.0 - discount ); 
   } 
 
 private: 
   Item item_; 
}; 



 
 
//---- <Taxed.h> ---------------- 
 
#include <Money.h> 
#include <PricedItem.h> 
#include <utility> 
 
template< double taxRate, PricedItem Item > 
class Taxed : private Item  // Using inheritance   
{ 
 public: 
   template< typename... Args > 
   explicit Taxed( Args&&... args ) 
      : Item{ std::forward<Args>(args)... } 
   {} 
 
   Money price() const { 
      return Item::price() * ( 1.0 + taxRate ); 
   } 
}; 

Both Discounted ( ) and Taxed ( ) serve as Decorators for other kinds of
Items: the Discounted class represents a certain discount on a given item,
and the Taxed class represents some kind of tax. This time, however, both
are implemented in the form of class templates. The first template argument
specifies the discount and the tax rate, respectively, and the second template
argument specifies the type of the decorated Item.

Most noteworthy, however, is the PricedItem constraint on the second
template argument ( ). This constraint represents the set of semantic
requirements, i.e. the expected behavior. Due to this constraint, you can
only provide types that represent items with a price() member function.
Using any other type would immediately result in a compilation error. Thus
PricedItem plays the same role as the Item base class in the classic
Decorator implementation in “Guideline 35: Use Decorators to Add
Customization Hierarchically”. For the same reason, it also represents the
separation of concerns based on the Single-Responsibility Principle (SRP).
Furthermore, if this constraint is owned by some high level in your
architecture, then you, as well as anyone else, are able to add new kinds of
items and new kinds of Decorators on any lower level. This feature
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perfectly fulfills the Open-Closed Principle (OCP), and due to the proper
ownership of the abstraction, also the Dependency Inversion Principle
(DIP) (see Figure 9-7).11





Figure 9-7. Dependency graph for the compile time Decorator

Both the Discounted and Taxed class templates are very similar, except for
the way they handle the decorated Item: while the Discounted class
template stores the Item in the form of a data member and therefore follows
“Guideline 20: Favor Composition over Inheritance”, the Taxed class
template privately inherits from the given Item class. Both approaches are
possible, reasonable, and have their individual strengths, but you should
consider the composition approach taken by the Discounted class template
as the more common approach. As explained in “Guideline 24: Use
Adapters to Standardize Interfaces”, there are only five reasons to prefer
non-public inheritance to composition (some of them are very rare):

If you have to override a virtual function

If you need access to a protected member function

If you need the adapted type to be constructed before another base
class

If you need to share a common virtual base class or override the
construction of a virtual base class

If you can draw significant advantage from the Empty Base
Optimization (EBO)

Arguably, for a large number of adapters, EBO may be a reason to favor
inheritance, but you should make sure that your choice is backed up by
numbers (for instance, by means of representative benchmarks).

With these three classes in place, you’re able to specify a
ConferenceTicket with a discount of 20% and a tax of 15%:

#include <ConferenceTicket.h> 
#include <Discounted.h> 
#include <Taxed.h> 
#include <cstdlib> 
 
int main() 
{ 

https://oreil.ly/nvqMn


   // 20% discount, 15% tax: (499*0.8)*1.15 = 459.08 
   Taxed<0.15,Discounted<0.2,ConferenceTicket>> item{ "Core C++", 499.0 }; 
 
   Money const totalPrice = item.price();  // Results in 459.08 
 
   // ... 
 
   return EXIT_SUCCESS; 
}

The biggest advantage of this compile-time approach is the significant
performance improvement: since there are no pointer indirections, and due
to the possibility of inlining, the compiler is able to go all out on optimizing
the resulting code. Also, the resulting code is arguably much shorter and not
bloated with any boilerplate code, and therefore easier to read.

“Could you be a little more specific about the performance results? In C++,
developers are bickering about a 1% performance difference and call it
significant. So seriously: how much faster is the compile-time approach?” I
see, you seem familiar with the performance zeal of the C++ community.
Well, as long as you promise me, again, that you won’t consider my results
the definitive answer but only a single example, and if we agree that this
comparison won’t evolve into a performance study, I can show you some
numbers. But before I do, let me quickly outline the benchmark that I will
use: I am comparing the classic object-oriented implementation from
“Guideline 35: Use Decorators to Add Customization Hierarchically” with
the described compile-time version. Of course, there is an arbitrary number
of decorator combinations, but I am restricting myself to the following four
item types:

using DiscountedConferenceTicket = Discounted<0.2,ConferenceTicket>; 
using TaxedConferenceTicket = Taxed<0.19,ConferenceTicket>; 
using TaxedDiscountedConferenceTicket = 
   Taxed<0.19,Discounted<0.2,ConferenceTicket>>; 
using DiscountedTaxedConferenceTicket = 
   Discounted<0.2,Taxed<0.19,ConferenceTicket>>;

Since in the compile time solution these four types do not have a common
base class, I am filling four specific std::vectors with these. In

12



comparison, for the classic runtime solution, I use a single std::vector of
std::unique_ptr<Item>s. In total, I am creating 10,000 items with
random prices for both solutions and calling std::accumulate() 5,000
times to compute the total price of all items.

With this background information, let’s take a look at the performance
results (Table 9-1). Again, I am normalizing the results, this time to the
performance of the runtime implementation.

Table 9-1. Performance results for the compile-time
Decorator implementation (normalized
performance)

GCC 11.1 Clang 11.1

Classic Decorator 1.0 1.0

Compile-time Decorator 0.078067 0.080313

As stated before, the performance of the compile-time solution is
significantly faster than the runtime solution: for both GCC and Clang, it
only takes approximately 8% of the time of the runtime solution, and is
therefore faster by more than one order of magnitude. I know, this sounds
amazing. However, while the performance of the compile-time solution is
extraordinary, it comes with a couple of potentially severe limitations: due
to the complete focus on templates, there is no runtime flexibility left. Since
even the discount and tax rates are realized via template parameters, a new
type needs to be created for each different rate. This may lead to longer
compile times and more generated code (i.e., larger executables).
Additionally, it stands to reason that all class templates reside in header
files, which again increases compile time and may reveal more
implementation details than desired. More importantly, changes to the
implementation details are widely visible and may cause massive
recompilations. However, the most limiting factor appears to be that the
solution can only be used in this form if all information is available at



compile time. Thus, you may be able to get to this performance level for
only a few special cases.

A Value-Based Runtime Decorator
Since the compile time Decorator may be fast but very inflexible at runtime,
let’s turn our attention to the second value-based Decorator implementation.
With this implementation, we will return to the realm of dynamic
polymorphism, with all of its runtime flexibility.

As you now know the Decorator design pattern, you realize that we need to
be able to easily add new types: new kinds of Item, as well as new price
modifiers. Therefore the design pattern of choice to turn the Decorator
implementation from “Guideline 35: Use Decorators to Add Customization
Hierarchically” into a value semantics–based implementation is Type
Erasure.  The following Item class implements an owning Type Erasure
wrapper for our priced item example:

 
//---- <Item.h> ---------------- 
 
#include <Money.h> 
#include <memory> 
#include <utility> 
 
class Item 
{ 
 public: 
   // ... 
 
 private: 
   struct Concept   
   { 
      virtual ~Concept() = default; 
      virtual Money price() const = 0; 
      virtual std::unique_ptr<Concept> clone() const = 0; 
   }; 
 
   template< typename T > 
   struct Model : public Concept   
   { 
      explicit Model( T const& item ) : item_( item ) {} 
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      explicit Model( T&& item ) : item_( std::move(item) ) {} 
 
      Money price() const override 
      { 
         return item_.price(); 
      } 
 
      std::unique_ptr<Concept> clone() const override 
      { 
         return std::make_unique<Model<T>>(*this); 
      } 
 
      T item_; 
   }; 
 
   std::unique_ptr<Concept> pimpl_; 
}; 

In this implementation, the Item class defines a nested Concept base class
in its private section ( ). As usual, the Concept base class represents the
set of requirements (i.e. the expected behavior) for the wrapped types,
which are expressed by the price() and clone() member functions. These
requirements are implemented by the nested Model class template ( ).
Model implements the price() function by forwarding the call to the
price() member function of the stored item_ data member, and the
clone() function by creating a copy of the stored item.

The public section of the Item class should look familiar:

 
//---- <Item.h> ---------------- 
 
// ... 
 
class Item 
{ 
 public: 
   template< typename T > 
   Item( T item )   
      : pimpl_( std::make_unique<Model<T>>( std::move(item) ) ) 
   {} 
 
   Item( Item const& item ) : pimpl_( item.pimpl_->clone() ) {} 
 



   Item& operator=( Item const& item ) 
   { 
      pimpl_ = item.pimpl_->clone(); 
      return *this; 
   } 
 
   ~Item() = default; 
   Item( Item&& ) = default; 
   Item& operator=( Item&& item ) = default; 
 
   Money price() const { return pimpl_->price(); }   
 
 private: 
   // ... 
}; 

Next to the usual implementation of the Rule of 5, the class is again
equipped with a templated constructor that accepts all kinds of items ( ).
Last but not least, the class provides a price() member function, which
mimics the expected interface of all items ( ).

With this wrapper class in place, you are able to add new items easily:
neither any intrusive modification of existing code nor any use of a base
class is required. Any class that provides a price() member function and is
copyable will work. Luckily, this includes the ConferenceTicket class
from our compile-time Decorator implementation, which provides
everything we need and is firmly based on value semantics. Unfortunately,
this is not true for the Discounted and Taxed classes, since they expect
decorated items in the form of a template argument. Therefore, we re-
implement Discounted and Taxed for use in the Type Erasure context:

//---- <Discounted.h> ---------------- 
 
#include <Item.h> 
#include <utility> 
 
class Discounted 
{ 
 public: 
   Discounted( double discount, Item item ) 
      : item_( std::move(item) ) 
      , factor_( 1.0 - discount ) 
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   {} 
 
   Money price() const 
   { 
      return item_.price() * factor_; 
   } 
 
 private: 
   Item item_; 
   double factor_; 
}; 
 
 
//---- <Taxed.h> ---------------- 
 
#include <Item.h> 
#include <utility> 
 
class Taxed 
{ 
 public: 
   Taxed( double taxRate, Item item ) 
      : item_( std::move(item) ) 
      , factor_( 1.0 + taxRate ) 
   {} 
 
   Money price() const 
   { 
      return item_.price() * factor_; 
   } 
 
 private: 
   Item item_; 
   double factor_; 
};

It’s particularly interesting to note that neither of these two classes are
derived from any base class, yet both perfectly implement the Decorator
design pattern. On the one hand, they implement the operations required by
the Item wrapper to count as an item (in particular, the price() member
function and the copy constructor), but on the other hand, they own an
Item. Therefore, both enable you to combine Decorators arbitrarily, as
demonstrated in the following main() function:



#include <ConferenceTicket.h> 
#include <Discounted.h> 
#include <Taxed.h> 
 
int main() 
{ 
   // 20% discount, 15% tax: (499*0.8)*1.15 = 459.08 
   Item item(Taxed(0.19, Discounted(0.2, ConferenceTicket{"Core 
C++",499.0}))); 
 
   Money const totalPrice = item.price(); 
 
   // ... 
 
   return EXIT_SUCCESS; 
}

“Wow, this is beautiful: there are no pointers, no manual allocations, and it
feels very natural and intuitive. But at the same time, it’s extremely flexible.
This is too good to be true—there must be a catch. What about the
performance?” you say. Well, you sound like you expect a total
performance breakdown. So let’s benchmark this solution. Of course, I’m
using the same benchmark as for the compile-time version of Decorator and
just adding the third solution based on Type Erasure. The performance
numbers are shown in Table 9-2.

Table 9-2. Performance results for the Type
Erasure Decorator implementation (normalized
performance)

GCC 11.1 Clang 11.1

Classic Decorator 1.0 1.0

Compile-time Decorator 0.078067 0.080313

Type Erasure Decorator 0.997510 0.971875

As you can see, the performance is not worse than the performance of the
other, classic runtime solution. In fact, the performance even appears to be a



tiny bit better, but although this is an average of many runs, I wouldn’t put
too much emphasis on that. However, remember that there are multiple
options to improve the performance of the Type Erasure solution, as
demonstrated in “Guideline 33: Be Aware of the Optimization Potential of
Type Erasure”.

While performance may not be the primary strength of the runtime
solution(s) (at least in comparison to a compile-time solution), it definitely
shines when it comes to runtime flexibility. For instance, it is possible to
decide at runtime to wrap any Item in another Decorator (based on user
input, based on the result of a computation, …). This, of course, will again
yield an Item, which, together with many other Items, can be stored in a
single container. It indeed gives you an enormous runtime flexibility.

Another strength is the ability to hide implementation details in source files
more easily. While this may result in a loss of runtime performance, it will
likely result in better compile times. Most importantly: any modification to
the hidden code will not affect any other code and thus save you a lot of
recompilations, because the implementation details are more strongly
encapsulated.

In summary, both the compile-time and runtime solutions are value based
and lead to simpler, more comprehensible user code. However, they also
come with individual strengths and weaknesses: while the runtime approach
offers more flexibility, the compile-time approach dominates with respect to
performance. In reality, you will rarely end up with a pure compile time or
runtime approach, but you will very often find yourself somewhere between
these two extremes. Make sure you know your options: weigh them against
each other and find a compromise that perfectly combines the best of both
worlds and fits your particular situation.



GUIDELINE 36: UNDERSTAND THE TRADE-OFF
BETWEEN RUNTIME AND COMPILE-TIME

ABSTRACTION

Be aware of both runtime and compile-time implementations of
the Decorator design pattern.

Understand that compile-time solutions usually perform better but
limit runtime flexibility and encapsulation.

Understand that runtime solutions are more flexible and are good
at hiding details but perform worse.

Prefer a value semantics solution to a reference semantics solution.

1  Remember “Guideline 2: Design for Change” and Core Guideline C.133: “Avoid protected
data.”

2  See “Guideline 20: Favor Composition over Inheritance” for a discussion on why so many
design patterns draw their power from composition rather than inheritance.

3  A null object represents an object with neutral (null) behavior. As such, it can be seen as a
default for a Strategy implementation.

4  Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software.

5  You may be wondering if this is the most reasonable approach for dealing with taxes. No,
unfortunately it’s not. That’s because first, as usual, reality is so much more complex than this
simple, educational example, and second, because in this form it’s easy to apply taxes
incorrectly. While I can’t help with the first point (I’m just a mere mortal), I will go into detail
about the second point at the end of this guideline.

6  If you’re wondering about the incomplete implementation: the focus here is entirely on how
to design allocators, not on how to implement an allocator. For a thorough introduction on how
to implement a C++17 allocator, see Nicolai Josuttis’s C++17 - The Complete Guide.

7  The metaphor of Strategy being the guts of an object and Decorator being the skin originates
from the GoF book.

8  Scott Meyers, Effective C++, 3rd ed. (Addison-Wesley, 2005).

9  If you’re thinking that the original price() function should be renamed netPrice() to
reflect its true purpose, then I agree.
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10  Note that it is only possible to use floating-point values as non-type template parameters
(NTTPs) since C++20. Alternatively, you could store the discount and tax rates in the form of
data members.

11  Alternatively, in particular if you cannot use C++20 concepts yet, this is an opportunity to use
the Curiously Recurring Template Pattern (CRTP); see “Guideline 26: Use CRTP to Introduce
Static Type Categories”.

12  To avoid a visit from the tax collection office, I should explicitly state that I’m aware of the
questionable nature of the Discounted<0.2,Taxed<0.19,ConferenceTicket>> class (see
also the list of potential problems of Decorator at the end of “Guideline 35: Use Decorators to
Add Customization Hierarchically”). In my defense: it’s an obvious permutation of decorators,
which is well suited for this benchmark.

13  For a thorough overview of Type Erasure, see Chapter 8 and in particular “Guideline 32:
Consider Replacing Inheritance Hierarchies with Type Erasure”.
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Chapter 10. The Singleton
Pattern

In this chapter, we take a look at the (in-)famous Singleton pattern. I know,
you may already be acquainted with Singleton, and you may already have a
strong opinion about it. It is even possible that you consider Singleton an
antipattern and thus ask yourself how I mustered the courage to include it in
this book. Well, I am aware that Singleton is not particularly popular and in
many circles has a rather bad reputation, in particular because of the global
nature of Singletons. From that perspective, however, it might be very
surprising to learn that there are a couple of “Singleton”-like instances in
the C++ Standard Library. Seriously! And, honestly, they work
fantastically! Therefore, we should seriously talk about what a Singleton is,
when Singleton works, and how to deal with Singleton properly.

In “Guideline 37: Treat Singleton as an Implementation Pattern, Not a
Design Pattern”, I will explain the Singleton pattern and demonstrate how it
works by a very commonly used implementation, the so-called Meyers’
Singleton. I will, however, also make a strong argument to not treat
Singleton as a design pattern but as an implementation pattern.

In “Guideline 38: Design Singletons for Change and Testability”, we accept
the fact that sometimes we need a solution to represent the few global
aspects in our code. This is what the Singleton pattern is often used for.
This also means that we are confronted by the usual problems of
Singletons: global state; many strong, artificial dependencies; and an
impeded changeability and testability. While these sound like excellent
reasons to avoid Singleton after all, I will show you that by proper software
design, you can combine the Singleton benefits with excellent changeability
and testability.



Guideline 37: Treat Singleton as an
Implementation Pattern, Not a Design Pattern
Let me start by addressing the elephant in the room:

Singleton is not a design pattern.

If you haven’t heard about Singleton before, then this might not make any
sense at all, but bear with me. I promise to explain Singleton shortly. If you
have heard about Singleton before, then I assume you’re either nodding in
agreement with a sympathizing “I know” look on your face, or you are
utterly stunned and initially don’t know what to say. “But why not?” you
eventually dare to ask. “Isn’t it one of the original design patterns from the
Gang of Four book?” Yes, you’re correct: Singleton is one of the 23 original
patterns documented in the GoF book. At the time of writing, Wikipedia
calls it a design pattern, and it is even listed as a design pattern in Steve
McConnell’s bestseller Code Complete.  Nevertheless, it still isn’t a design
pattern, because it doesn’t have the properties of a design pattern. Let me
explain.

The Singleton Pattern Explained
Sometimes you may want to guarantee that there is only one, and exactly
one, instance of a particular class. In other words, you have a Highlander
situation: “There can be only one.”  This might make sense for the system-
wide database, the one and only logger, the system clock, the system
configuration, or, in short, any class that should not be instantiated multiple
times, since it represents something that exists only once. That is the intent
of the Singleton pattern.

THE SINGLETON PATTERN
Intent: “Ensure a class has only one instance, and provide a global point of access to
it.”
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This intent is visualized by the Gang of Four with the UML diagram in
Figure 10-1, which introduces the instance() function as the global point
of access to the unique instance.

Figure 10-1. The UML representation of the Singleton pattern

There are multiple ways to restrict the number of instantiations to exactly
one. Definitely one of the most useful and therefore most commonly used
forms of Singleton is the Meyers’ Singleton.  The following Database
class is implemented as a Meyers’ Singleton:

 
//---- <Database.h> ---------------- 
 
class Database final 
{ 
 public: 
   static Database& instance()   
   { 
      static Database db;  // The one, unique instance 
      return db; 
   } 
 
   bool write( /*some arguments*/ ); 
   bool read( /*some arguments*/ ) const; 
   // ... More database-specific functionality 
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   // ... Potentially access to data members 
 
 private: 
   Database() {}   
   Database( Database const& ) = delete; 
   Database& operator=( Database const& ) = delete; 
   Database( Database&& ) = delete; 
   Database& operator=( Database&& ) = delete; 
 
   // ... Potentially some data members 
}; 

The Meyers’ Singleton evolves around the fact that it’s possible to access
the single instance of the Database class onlhy via the public, static
instance() function ( ):

#include <Database.h> 
#include <cstdlib> 
 
int main() 
{ 
   // First access, database object is created 
   Database& db1 = Database::instance(); 
   // ... 
 
   // Second access, returns a reference to the same object 
   Database& db2 = Database::instance(); 
   assert( &db1 == &db2 ); 
 
   return EXIT_SUCCESS; 
}

Indeed, this function is the only way to get a Database: all functionality
that could possibly be used to create, copy, or move an instance is either
declared in the private section or is explicitly deleted.  Although this
appears to be pretty straightforward, one implementation detail is of special
interest: note that the default constructor is explicitly defined and not
defaulted ( ). The reason is if it were defaulted, up to C++17, it would
be possible to create a Database with an empty set of braces, i.e., via value
initialization:

5
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#include <cstdlib> 
 
class Database 
{ 
 public: 
   // ... As before 
 
 private: 
   Database() = default;  // Compiler generated default constructor 
 
   // ... As before 
}; 
 
int main() 
{ 
   Database db;    // Does not compile: Default initialization 
   Database db{};  // Works, since value initialization results in aggregate 
                   //   initialization, because Database is an aggregate type 
 
   return EXIT_SUCCESS; 
}

Up to C++17, the Database class counts as an aggregate type, which means
that value initialization would be performed via aggregate initialization.
Aggregate initialization, in turn, ignores the default constructor, including
the fact that it is private, and simply performs a zero initialization of the
object. Thus, value initialization enables you to still create an instance. If,
however, you provide the default constructor, then the class does not count
as an aggregate type, which prevents aggregate initialization.

The instance() function is implemented in terms of a static local
variable. This means that the first time control passes through the
declaration, the variable is initialized in a thread-safe way, and on all further
calls the initialization is skipped.  On every call, the first and all subsequent
calls, the function returns a reference to the static local variable.

The rest of the Database class is pretty much what you would expect from
a class representing a database: there are some public, database-related
functions (e.g., write() and read()) and there could be some data
members, including access functions. In other words, except for the
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instance() member function and the special members, Database is just a
normal class.

Singleton Does Not Manage or Reduce Dependencies
Now, with one possible implementation of a Singleton in mind, let’s go
back to my claim that Singleton is not a design pattern. First, let’s remind
ourselves of the properties of a design pattern, which I defined in
“Guideline 11: Understand the Purpose of Design Patterns”:

A design pattern:

Has a name

Carries an intent

Introduces an abstraction

Has been proven

The Singleton pattern definitely has a name, and it definitely has an intent.
No question there. I would also claim that it has been proven over the years
(although there may be skeptical voices that point out that Singleton is
rather infamous). However, there is no kind of abstraction: no base class, no
template parameters, nothing. Singleton does not represent an abstraction
itself, and it does not introduce an abstraction. In fact, it isn’t concerned
with the structure of code or with the interaction and interdependencies of
entities, and hence it isn’t aiming at managing or reducing dependencies.
This, though, is what I defined to be an integral part of software design.
Instead, Singleton is focused on restricting the number of instantiations to
exactly one. Thus, Singleton is not a design pattern but merely an
implementation pattern.

“Then why is it listed as a design pattern in so many important sources?”
you ask. This is a fair and good question. There may be three answers to
that. First, in other programming languages, in particular languages where
every class can automatically represent an abstraction, the situation may be
different. While I acknowledge this, I still believe that the intent of the
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Singleton pattern is primarily targeted for implementation details and not
for dependencies and decoupling.

Second, Singleton is very commonly used (although often also misused), so
it is definitely a pattern. Since there are Singletons in many different
programming languages, it does not appear to be just an idiom of the C++
programming language. As a consequence, it appears reasonable to call it a
design pattern. This chain of arguments may sound plausible to you, but I
feel it falls short of distinguishing between software design and
implementation details. This is why in “Guideline 11: Understand the
Purpose of Design Patterns”, I introduced the term implementation pattern
to distinguish between different kinds of language-agnostic patterns such as
Singleton.

And third, I believe that we are still in the process of understanding
software design and design patterns. There is no common definition of
software design. For that reason, I came up with one in “Guideline 1:
Understand the Importance of Software Design”. There is no common
definition of design patterns, either. This is why I came up with one in
“Guideline 11: Understand the Purpose of Design Patterns”. I strongly
believe that we must talk more about software design and more about
patterns to come to a common understanding of the necessary terminology,
especially in C++.

In summary, you do not use a Singleton to decouple software entities. So
despite the fact that it is described in the famous GoF book, or in Code
Complete, or even listed as a design pattern on Wikipedia, it does not serve
the purpose of a design pattern. Singleton is merely dealing with
implementation details, and as such you should treat it as an
implementation pattern.

9
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GUIDELINE 37: TREAT SINGLETON AN
IMPLEMENTATION PATTERN, NOT A DESIGN PATTERN

The goal of Singleton is not to decouple or manage dependencies,
and thus it does not fulfill the expectations of a design pattern.

Apply the Singleton pattern with the intent to restrict the number
of instances of a particular class to exactly one.

Guideline 38: Design Singletons for Change
and Testability
Singleton is indeed a rather infamous pattern: there are many voices out
there that describe Singleton as a general problem in code, as an antipattern,
as dangerous, or even as evil. Therefore, there is a lot of advice out there to
avoid the pattern, among others, Core Guideline I.3:

Avoid singletons.

One of the primary reasons why people dislike Singleton is that it often
causes artificial dependencies and obstructs testability. As such, it runs
contrary to two of the most important and most general guidelines in this
book: “Guideline 2: Design for Change” and “Guideline 4: Design for
Testability”. From that perspective, Singleton indeed appears to be a
problem in code and should be avoided. However, despite all the good-
intentioned warnings, the pattern is persistently used by many developers.
The reasons for that are manifold but probably mainly related to two facts:
first, sometimes (and let’s agree on sometimes) it is desirable to express the
fact that something exists only once and should be available for many
entities in the code. Second, sometimes Singleton appears to be the proper
solution, as there are global aspects to represent.

So, let’s do the following: instead of arguing that Singleton is always bad
and evil, let’s focus on those few situations where we need to represent a
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global aspect in our program and discuss how to represent this aspect
properly, but still design for change and testability.

Singletons Represent Global State
Singletons are mostly used to represent entities in a program that logically
and/or physically exist only once and that should be used by many other
classes and functions.  Common examples are the system-wide database,
logger, clock, or configuration. These examples, including the term system-
wide, give an indication of the nature of these entities: they commonly
represent globally available functionality or data, i.e., global state. From
that perspective, the Singleton pattern appears to make sense: by preventing
everyone from creating new instances, and by forcing everyone to use the
one instance, you can guarantee uniform and consistent access to this global
state across all using entities.

This representation and introduction of global state, however, explains why
Singleton is commonly considered a problem. As Michael Feathers
expressed it:

The singleton pattern is one of the mechanisms people use to make global
variables. In general, global variables are a bad idea for a couple of
reasons. One of them is opacity.

Global variables are indeed a bad idea, particularly for one important
reason: the term variable suggests that we are talking about mutable global
state. And that kind of state can indeed cause a lot of headaches. To be
explicit, mutable global state is frowned upon (in general, but especially in
a multithreaded environment), as it is difficult, costly, and likely both to
control access and guarantee correctness. Furthermore, global (mutable)
state is very hard to reason about, as read and write access to this state
usually happens invisibly within some function, which, based on its
interface, does not reveal the fact that it uses the global state. And last but
not least, if you have several globals, whose lifetimes depend on one
another and that are distributed over several compilation units, you might
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be facing the static initialization order fiasco (SIOF).  Obviously, it is
beneficial to avoid global state as much as possible.

The problem of global state, however, is a problem that we can’t resolve by
avoiding Singletons. It’s a general problem, unrelated to any particular
pattern. The same problem, for instance, also exists for the Monostate
pattern, which enforces a single, global state but allows for any number of
instantiations.  So on the contrary, Singleton can help deal with the global
state by constraining access to it. For instance, as Miško Hevery explains in
his 2008 article, Singletons that provide a unidirectional data flow to or
from some global state are acceptable:  a Singleton implementing a logger
would only allow you to write data but not read it. A Singleton representing
a system-wide configuration or clock would only allow you to read the data
but not write it, thus representing a global constant. The restriction to
unidirectional data flow helps avoid many of the usual problems with global
state. Or in the words of Miško Hevery (the emphasis being mine):

Appropriate use of “Global” or semi-Global states can greatly simplify
the design of applications […].

Singletons Impede Changeability and Testability
Global state is an intrinsic problem of Singletons. However, even if we feel
comfortable with representing global state with a Singleton, there are
serious consequences: functions that use Singletons depend on the
represented global data and thus become harder to change and harder to
test. To better understand this, let’s revive the Database Singleton from
“Guideline 37: Treat Singleton as an Implementation Pattern, Not a Design
Pattern”, which is now actively used by a couple of arbitrary classes,
namely Widget and Gadget:

//---- <Widget.h> ---------------- 
 
#include <Database.h> 
 
class Widget 
{ 
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 public: 
   void doSomething( /*some arguments*/ ) 
   { 
      // ... 
      Database::instance().read( /*some arguments*/ ); 
      // ... 
   } 
}; 
 
 
//---- <Gadget.h> ---------------- 
 
#include <Database.h> 
 
class Gadget 
{ 
 public: 
   void doSomething( /*some arguments*/ ) 
   { 
      // ... 
      Database::instance().write( /*some arguments*/ ); 
      // ... 
   } 
};

Widget and Gadget both require access to the system-wide Database. For
that reason, they call the Database::instance() function and
subsequently the read() and write() functions.

Since they use the Database and thus depend on it, we would like them to
reside in architecture levels below the level of the Database Singleton. That
is because, as you remember from “Guideline 2: Design for Change”, we
can call it a proper architecture only if all dependency arrows run toward
the high levels (see Figure 10-2).





Figure 10-2. The desired dependency graph for a Database implemented as a Singleton

Although this dependency structure may be desirable, unfortunately it is
only an illusion: the Database class is not an abstraction but a concrete
implementation, representing the dependency on a very specific database!
Therefore, the real dependency structure is inverted and looks something
like Figure 10-3.

The actual dependency structure utterly fails the Dependency Inversion
Principle (DIP) (see “Guideline 9: Pay Attention to the Ownership of
Abstractions”): all dependency arrows point toward the lower level. In other
words, right now there is no software architecture!





Figure 10-3. The actual dependency graph for a Database implemented as a Singleton

Since the Database is a concrete class and not an abstraction, there are
strong and unfortunately even invisible dependencies from all over the code
to the specific implementation details and design choices of the Database
class. This may—in the worst case—include a dependency on vendor-
specific details that become visible throughout the code, manifest in many
different places, and later make changes excruciatingly hard or even
impossible. Due to that, the code becomes much more difficult to change.

Also consider how badly tests are affected by this dependency. All tests that
use one of the functions depending on the Database Singleton become
themselves dependent on the Singleton. This means, for instance, that for
every test using the Widget::do Something() function, you would always
have to provide the one and only Database class. The unfortunate, but also
simple, reason is that none of these functions provide you with a way to
substitute the Database with something else: any kind of stub, mock, or
fake.  They all treat the Database Singleton as their shiny, precious secret.
Testability is therefore severely impeded, and writing tests becomes so
much harder that you might be tempted to not write them at all.

This example indeed demonstrates the usual problems with Singletons and
the unfortunate artificial dependencies they introduce. These dependencies
make the system more inflexible and more rigid, and thus harder to change
and test. That, of course, should not be. On the contrary, it should be easy to
replace a database implementation with another one, and it should be easy
to test functionality that uses a database. For these exact reasons, we must
make sure that the Database becomes a true implementation detail on the
low level of a proper architecture.

“But wait a second, you just said that if the Database is an implementation
detail, there is no architecture, right?” Yes, I said that. And there is nothing
we can do as it is: the Database Singleton does not represent any
abstraction and does not enable us to deal with dependencies at all.
Singleton is just not a design pattern. So in order to remove the
dependencies on the Database class and make the architecture work, we
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will have to design for change and testability by introducing an abstraction
and using a real design pattern. To achieve that, let’s take a look at an
example with a good way to deal with global aspects, using Singletons from
the C++ Standard Library.

Inverting the Dependencies on a Singleton
I’m returning to a true El Dorado of design patterns, which I have used
several times to demonstrate different design patterns: the C++17
polymorphic memory resources:

 
#include <array> 
#include <cstddef> 
#include <cstdlib> 
#include <memory_resource> 
#include <string> 
#include <vector> 
// ... 
 
int main() 
{ 
   std::array<std::byte,1000> raw;  // Note: not initialized! 
 
   std::pmr::monotonic_buffer_resource 
      buffer{ raw.data(), raw.size(), std::pmr::null_memory_resource() };   
 
   std::pmr::vector<std::pmr::string> strings{ &buffer }; 
 
   // ... 
 
   return EXIT_SUCCESS; 
} 

In this example, we configure the
std::pmr::monotonic_buffer_resource, called buffer, to work only
with the static memory contained in the given std::array raw ( ). If this
memory is depleted, buffer will try to acquire new memory via its
upstream allocator, which we specify to be std::pmr::null 
_memory_resource(). Allocating via this allocator will never return any
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memory but will always fail with the std::bad_alloc() exception. Thus,
buffer is restricted to the 1,000 bytes provided by raw.

While you should immediately remember and recognize this as an example
of the Decorator design pattern, this also serves as an example of the
Singleton pattern: the std::pmr::null_memory_resource() function
returns a pointer to the same allocator every time the function is called and
thus acts as a single point of access to the one and only instance of
std::pmr::null_memory_resource. Thus, the returned allocator acts as a
Singleton. Although this Singleton does not provide a unidirectional flow of
data (after all, we can both allocate memory and give it back), Singleton
still feels like a reasonable choice, as it represents one kind of global state:
memory.

It is particularly interesting and important to note that this Singleton does
not make you depend on the specific implementation details of the
allocator. Quite the opposite: the std::pmr::null_memory_resource()
function returns a pointer to std::pmr::memory_resource. This class
represents a base class for all kinds of allocators (at least in the realm of
C++17), and thus serves as an abstraction. Still,
std::pmr::null_memory_resource() represents a specific allocator, a
specific choice, which we now depend on. As this functionality is in the
Standard Library, we tend to not recognize it as a dependency, but generally
speaking it is: we are not provided with an opportunity to replace the
standard-specific implementation.

This changes if we replace the call to
std::pmr::null_memory_resource() with a call to
std::pmr::get_default_resource() ( ):

 
#include <memory_resource> 
// ... 
 
int main() 
{ 
   // ... 
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   std::pmr::monotonic_buffer_resource 
      buffer{ raw.data(), raw.size(), std::pmr::get_default_resource() };   
 
   // ... 
 
   return EXIT_SUCCESS; 
} 

The std::pmr::get_default_resource() function also returns a pointer
to std::pmr::memory_resource, which represents an abstraction for the
system-wide default allocator. By default, the returned allocator is returned
by the std::new_delete_resource() function. However, amazingly, this
default can be customized by the std::pmr::set_default_resource()
function:

namespace std::pmr { 
 
memory_resource* set_default_resource(memory_resource* r) noexcept; 
 
} // namespace std::pmr

With this function, we can define the
std::pmr::null_memory_resource() as the new system-wide default
allocator ( ):

 
// ... 
 
int main() 
{ 
   // ... 
 
   std::pmr::set_default_resource( std::pmr::null_memory_resource() );   
 
   std::pmr::monotonic_buffer_resource 
      buffer{ raw.data(), raw.size(), std::pmr::get_default_resource() }; 
 
   // ... 
 
   return EXIT_SUCCESS; 
} 
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With std::pmr::set_default_resource(), you are able to customize the
system-wide allocator. In other words, this function provides you with the
ability to inject the dependency on this allocator. Does this ring a bell? Does
this sound familiar? I very much hope this makes you think about another,
essential design pattern…drum roll…yes, correct: the Strategy design
pattern.

Indeed, this is a Strategy. Using this design pattern is a fantastic choice,
because it has an amazing effect on the architecture. While
std::pmr::memory_resource represents an abstraction from all possible
allocators and thus can reside on the high level of the architecture, any
concrete implementation of an allocator, including all (vendor-)specific
implementation details, can reside on the lowest level of the architecture.
As a demonstration, consider this sketch of the CustomAllocator class:

//---- <CustomAllocator.h> ---------------- 
 
#include <memory_resource> 
 
class CustomAllocator : public std::pmr::memory_resource 
{ 
 public: 
   // There is no need to enforce a single instance 
   CustomAllocator( /*...*/ ); 
   // No explicitly declared copy or move operations 
 
 private: 
   void* do_allocate( size_t bytes, size_t alignment ) override; 
 
   void do_deallocate( void* ptr, size_t bytes, 
                       size_t alignment ) override; 
 
   bool do_is_equal( 
      std::pmr::memory_resource const& other ) const noexcept override; 
 
   // ... 
};

Note that CustomAllocator publicly inherits from
std::pmr::memory_resource in order to qualify as a C++17 allocator.
Due to that, you can establish an instance of CustomAllocator as the new
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system-wide default allocator with the
std::pmr::set_default_resource() function ( ):

 
#include <CustomAllocator.h> 
 
int main() 
{ 
   // ... 
   CustomAllocator custom_allocator{ /*...*/ }; 
 
   std::pmr::set_default_resource( &custom_allocator );   
   // ... 
} 

While the std::pmr::memory_resource base class resides on the highest
level of the architecture, CustomAllocator is logically introduced on the
lowest architectural level (see Figure 10-4). Thus, the Strategy pattern
causes an inversion of dependencies (see “Guideline 9: Pay Attention to the
Ownership of Abstractions”): despite the Singleton-ness of the allocators,
despite representing global state, you depend on an abstraction instead of
the concrete implementation details.





Figure 10-4. The dependency inversion achieved via the std::pmr::memory_resource abstraction

As a side note, it’s worth pointing out that with this approach you can
trivially avoid any dependency on the order of initialization of globals (i.e.,
SIOF), since you can explicitly manage the initialization order by creating
all Singletons on the stack and in a single compilation unit:

int main() 
{ 
   // The one and only system-wide clock has no lifetime dependencies. 
   // Thus it is created first 
   SystemClock clock{ /*...*/ }; 
 
   // The one and only system-wide configuration depends on the clock. 
   SystemConfiguration config{ &clock, /*...*/ }; 
 
   // ... 
}

Applying the Strategy Design Pattern
Based on this previous example, you should now have an idea how to fix
our Database example. As a reminder, the goal is to keep the Database
class as the default database implementation but to make it an
implementation detail, i.e., to remove all dependencies on the concrete
implementation. All you need to do is apply the Strategy design pattern to
introduce an abstraction, alongside a global point of access and a global
point for dependency injection, on the high level of our architecture. This
will enable anyone (and I really mean anyone, as you also follow the Open-
Closed Principle (OCP); see “Guideline 5: Design for Extension”) to
introduce a custom database implementation (both concrete
implementations as well as test stubs, mocks, or fakes) on the lowest level.

So let’s introduce the following PersistenceInterface abstraction ( ):

 
//---- <PersistenceInterface.h> ---------------- 
 
class PersistenceInterface   
{ 



 public: 
   virtual ~PersistenceInterface() = default; 
 
   bool read( /*some arguments*/ ) const   
   { 
      return do_read( /*...*/ ); 
   } 
   bool write( /*some arguments*/ )   
   { 
      return do_write( /*...*/ ); 
   } 
 
   // ... More database specific functionality 
 
 private: 
   virtual bool do_read( /*some arguments*/ ) const = 0;   
   virtual bool do_write( /*some arguments*/ ) = 0;   
}; 
 
PersistenceInterface* get_persistence_interface();   
void set_persistence_interface( PersistenceInterface* persistence );   
 
// Declaration of the one 'instance' variable 
extern PersistenceInterface* instance;   

The PersistenceInterface base class provides the interface for all
possible database implementations. For instance, it introduces a read() and
a write() function, split into the public interface part and the private
implementation part, based on the example set by the
std::pmr::memory_resource class (  and ).  Of course, in reality it
would introduce a few more database-specific functions, but let read() and
write() be sufficient for this example.

In addition to the PersistenceInterface, you would also introduce a
global point of access called get_persistence_interface() ( ) and a
function to enable dependency injection called
set_persistence_interface() ( ). These two functions allow you to
access and set the global persistence system ( ).

The Database class now inherits from the PersistenceInterface base
class and implements the required interface (hopefully adhering to the

22



Liskov Substitution Principle (LSP); see “Guideline 6: Adhere to the
Expected Behavior of Abstractions”):

//---- <Database.h> ---------------- 
 
class Database : public PersistenceInterface 
{ 
 public: 
   // ... Potentially access to data members 
 
   // Make the class immobile by deleting the copy and move operations 
   Database( Database const& ) = delete; 
   Database& operator=( Database const& ) = delete; 
   Database( Database&& ) = delete; 
   Database& operator=( Database&& ) = delete; 
 
 private: 
   bool do_read( /*some arguments*/ ) const override; 
   bool do_write( /*some arguments*/ ) override; 
   // ... More database-specific functionality 
 
   // ... Potentially some data members 
};

In our special setting, the Database class represents the default database
implementation. We need to create a default instance of the database, in
case no other persistence system is specified via the
set_persistence_interface() function. However, if any other
persistence system is established as the system-wide database before
Database is created, we must not create an instance, as this would cause
unnecessary and unfortunate overhead. This behavior is achieved by
implementing the get _persistence_interface() function with two
static local variables and an Immediately Invoked Lambda Expression
(IILE) ( ):

 
//---- <PersistenceInterface.cpp> ---------------- 
 
#include <Database.h> 
 
// Definition of the one 'instance' variable 
PersistenceInterface* instance = nullptr; 



 
PersistenceInterface* get_persistence_interface() 
{ 
   // Local object, initialized by an 
   //   'Immediately Invoked Lambda Expression (IILE)' 
   static bool init = [](){   
      if( !instance ) { 
         static Database db; 
         instance = &db; 
      } 
      return true;  // or false, as the actual value does not matter. 
   }();  // Note the '()' after the lambda expression. This invokes the 
lambda. 
 
   return instance; 
} 
 
void set_persistence_interface( PersistenceInterface* persistence ) 
{ 
   instance = persistence; 
} 

The first time the execution flow enters the
get_persistence_interface() function, the init static local variable is
initialized. If, at this point in time, the instance is already set, no
Database is created. However, if it is not, the Database instance is created
as another static local variable inside the lambda and bound to the
instance variable:

#include <PersistenceInterface.h> 
#include <cstdlib> 
 
int main() 
{ 
   // First access, database object is created 
   PersistenceInterface* persistence = get_persistence_interface(); 
 
   // ... 
 
   return EXIT_SUCCESS; 
}



This implementation achieves the desired effect: Database becomes an
implementation detail, which no other code depends on and which can be
replaced at any time by a custom database implementation (see Figure 10-
5). Thus, despite the Singleton-ness of Database, it does not introduce
dependencies, and it can be easily changed and easily replaced for testing
purposes.





Figure 10-5. The dependency graph for the refactored, non-Singleton Database

“Wow, this is a great solution. I bet I can use that in a few places in my own
codebase!” you say, with an impressed and appreciative look on your face.
“But I see a potential problem: since I have to inherit from an interface
class, this is an intrusive solution. What should I do if I can’t change a
given Singleton class?” Well, in that case you have two nonintrusive design
patterns to choose from. Either you already have an inheritance hierarchy in
place, in which case you can introduce an Adapter to wrap the given
Singleton (see “Guideline 24: Use Adapters to Standardize Interfaces”), or
you don’t have an inheritance hierarchy in place yet, in which case you can
put the External Polymorphism design pattern to good use (see “Guideline
31: Use External Polymorphism for Nonintrusive Runtime
Polymorphism”).

“OK, but I see another, more serious problem: is this code truly thread-
safe?” Honestly, no, it is not. To give one example for a possible problem: it
could happen that during the first call to get_persistence_interface(),
which may take some time due to the setup of the Database instance, the
set_persistence_interface() is called. In that case, either the
Database is created in vain or the call to set_persistence_interface()
is lost. However, perhaps surprisingly, this is not something that we need to
address. Here’s why: remember that the instance represents global state. If
we assume that set_persistence_interface() can be called from
anywhere in the code at any time, in general we can’t expect that after
calling set_persistence_interface(), a call to
get_persistence_interface() would return the set value. Hence, calling
the set_persistence_interface() function from anywhere in the code is
like pulling the rug from under somebody’s feet. This is comparable to
calling std::move() on any lvalue:

template< typename T > 
void f( T& value ) 
{ 
   // ... 
   T other = std::move(value);  // Very bad move (literally)! 



   // ... 
}

From this perspective, the set_persistence_interface() function
should be used at the very beginning of the program or at the beginning of a
single test, not arbitrarily.

“Shouldn’t we make sure that the set_persistence_interface()
function can be called only once?” you ask. We most certainly could do
that, but this would artificially limit its use for testing purposes: we would
not be able to reset the persistence system at the beginning of every single
test.

Moving Toward Local Dependency Injection
“OK, I see. One last question: since this solution involves global state that
can be changed, wouldn’t it be better to use a more direct and more local
dependency injection to the lower-level classes? Consider the following
modification of the Widget class, which is given its dependency upon
construction:”

//---- <Widget.h> ---------------- 
 
#include <PersistenceInterface.h> 
 
class Widget 
{ 
 public: 
   Widget( PersistenceInterface* persistence )  // Dependency injection 
      : persistence_(persistence) 
   {} 
 
   void doSomething( /*some arguments*/ ) 
   { 
      // ... 
      persistence_->read( /*some arguments*/ ); 
      // ... 
   } 
 
 private: 



   PersistenceInterface* persistence_{}; 
};

I completely agree with you. This may be the next step to address the
problem of global state. However, before we analyze this approach, keep in
mind that this idea is only an option since we have already inverted the
dependencies. Thanks to introducing an abstraction in the high level of our
architecture, we suddenly have choices and can talk about alternative
solutions. Hence, the first and most important step is to properly manage
the dependencies. But back to your suggestion: I really like the approach.
The interface of the Widget class becomes more “honest” and clearly
displays all of its dependencies. And since the dependency is passed via the
constructor argument, the dependency injection becomes more intuitive and
more natural.

Alternatively, you could pass the dependency on the
Widget::doSomething() function directly:

//---- <Widget.h> ---------------- 
 
#include <PersistenceInterface.h> 
 
class Widget 
{ 
 public: 
   void doSomething( PersistenceInterface* persistence, /*some arguments*/ ) 
   { 
      // ... 
      persistence->read( /*some arguments*/ ); 
      // ... 
   } 
};

While this approach may not be the best for a member function, this may be
your only option for free functions. And again, the function becomes a little
more “honest” by explicitly stating its dependencies.

However, there is a flip side to this direct dependency injection: this
approach may quickly become unwieldy in large call stacks. Passing a
dependency through several levels of your software stack to make them



available at the point they are needed is neither convenient nor intuitive.
Additionally, especially in the presence of several Singletons, the solution
quickly becomes cumbersome: passing, for instance, a
PersistenceInterface, an Allocator, and the system-wide
Configuration through many layers of function calls just to be able to use
them on the lowest level truly is not the most elegant approach. For that
reason, you may want to combine the ideas of providing a global access
point and a local dependency injection, for instance, by introducing a
wrapper function:

 
//---- <Widget.h> ---------------- 
 
#include <PersistenceInterface.h> 
 
class Widget 
{ 
 public: 
   void doSomething( /*some arguments*/ )   
   { 
      doSomething( get_persistence_interface(), /*some arguments*/ ); 
   } 
 
   void doSomething( PersistenceInterface* persistence, /*some arguments*/ )  
 

   { 
      // ... 
      persistence->read( /*some arguments*/ ); 
      // ... 
   } 
}; 

While we still provide the previous doSomething() function ( ), we now
additionally provide an overload that accepts a PersistenceInterface as
a function argument ( ). The second function does all the work, whereas
the first function now merely acts as a wrapper, which injects the globally
set PersistenceInterface. In this combination, it’s possible to make local
decisions and to locally inject the desired dependency, but at the same time
it is not necessary to pass the dependency through many layers of function
calls.



However, truth be told, while these solutions may work very well in this
database example and also in the context of managing memory, it might not
be the right approach for every single Singleton problem. So don’t believe
that this is the only possible solution. After all, it depends. However, it is a
great example of the general process of software design: identify the aspect
that changes or causes dependencies, then separate concerns by extracting a
fitting abstraction. Depending on your intent, you will just have applied a
design pattern. So consider naming your solution accordingly, and by that
leave traces of your reasoning for others to pick up on.

In summary, the Singleton pattern certainly is not one of the glamorous
patterns. It simply comes with too many disadvantages, most importantly
the usual flaws of global state. But still, despite the many negative aspects,
if used judiciously, Singleton can be the right solution for representing the
few global aspects in your code in some situations. If it is, prefer Singletons
with unidirectional data flow, and design your Singletons for change and
testability by inverting the dependencies and enabling dependency injection
with the Strategy design pattern.

GUIDELINE 38: DESIGN SINGLETONS FOR CHANGE
AND TESTABILITY

Be aware that Singleton represents global state, with all its flaws.

Avoid global state as much as possible.

Use Singleton judiciously and just for the few global aspects in
your code.

Prefer Singletons with unidirectional data flow.

Use the Strategy design pattern to invert dependencies on your
Singleton to remove the usual impediments to changeability and
testability.
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Chapter 11. The Last Guideline

There is only one more guideline, one more piece of advice that I can
bestow upon you. So here it is: the last guideline.

Guideline 39: Continue to Learn About
Design Patterns
“That’s it? This is all you’ve got? Come on, there are so many more design
patterns out there. We barely touched the surface!” you say. Well, honestly,
you are completely correct; there is nothing I can add to that. But in my
defense, I was planning for many more patterns until reality struck me:
there is only so much information that you can fit into a book with 400
pages. But don’t fret: in these 400 pages I’ve taken you on a journey
through the most important pieces of advice for any design that you will
need anywhere, anytime in your software development career:

Minimize dependencies

Dealing with dependencies is the core of software design. And whatever
kind of software you write, if you are seriously interested in making it
last, you will have to deal with dependencies: the necessary ones, but
primarily the artificial ones. Of course, your major goal is to reduce
dependencies and hopefully even minimize them. To achieve this goal,
you will inevitably deal with design patterns.

Separate concerns

This may be the most important, central design guideline that you can
take away from this book. Separate concerns and your software
structures will detangle and become easier to understand, change, and
test. All design patterns, without exception, provide you with some way
to separate concerns. The major difference between patterns is the way



they separate concerns, their intent. Although design patterns may be
structurally similar, their intent is always unique.

Prefer composition to inheritance

While inheritance is a powerful feature, the true strength of many
design patterns stems from building on composition. For instance, the
Strategy design pattern, one of the patterns that is used everywhere (and
hopefully this has become obvious by now), primarily builds on
composition to separate concerns, but then also offers you the option to
use inheritance to extend the functionality. The same is true for Bridge,
Adapter, Decorator, External Polymorphism, and Type Erasure.

Prefer a nonintrusive design

True flexibility and extendibility arise when it isn’t necessary to modify
existing code but possible to just add new code. Therefore, any design
that is nonintrusive is preferable to design that intrusively modifies
existing code. Hence, design patterns such as Decorator, Adapter,
External Polymorphism, and Type Erasure are such valuable additions
to your design pattern toolbox.

Prefer value semantics over reference semantics

To keep code simple, understandable, and away from dark corners such
as nullptrs, dangling pointers, lifetime dependencies, etc., you should
prefer to employ values instead of pointers and references. And C++ is a
wonderful language to use for that purpose, as C++ takes value
semantics seriously. It allows you, the developer, to live a happy life in
the realm of value semantics. Surprisingly, as we have seen with
std::variant and Type Erasure, this philosophy does not necessarily
have a negative performance impact but may even increase
performance.

In addition to these general pieces of advice about software design, you
have gained insight into the purpose of design patterns. Now you know



what a design pattern is.

A design pattern:

Has a name

Carries an intent

Introduces an abstraction

Has been proven

Equipped with this information, you will no longer fall for false claims
about some implementation detail being a design pattern (as I have been
confronted with multiple times in my career), for instance, the claim that
smart pointers (std::unique_ptr, std::shared_ptr, etc.) or factory
functions such as std::make_unique() are implementations of design
patterns. Also, you are now familiar with several of the most important and
useful design patterns, which will prove to be useful again and again:

Visitor

To extend operations on a closed set of types, reach for the Visitor
design pattern (possibly realized by std::variant).

Strategy

To configure the behavior and “inject” it from outside, pick the Strategy
design pattern (aka policy-based design).

Command

To abstract from different kinds of operations, possibly undoable
operations, utilize the Command design pattern.

Observer

To observe state change in some entities, choose the Observer design
pattern.

Adapter



To adapt one interface to another one, nonintrusively, without changing
code, use the Adapter design pattern.

CRTP

For a static abstraction, free of virtual functions (and you can’t employ
C++20 concepts yet), then apply the CRTP design pattern. CRTP might
also prove to be useful to create compile-time mixin classes.

Bridge

To hide implementation details and reduce physical dependencies, make
use of the Bridge design pattern.

Prototype

To create a virtual copy, the Prototype design pattern is the right choice.

External Polymorphism

To promote loose coupling by adding polymorphic behavior externally,
remember the External Polymorphism design pattern.

Type Erasure

For the power of External Polymorphism in combination with the
advantages of value semantics, consider the Type Erasure design
pattern.

Decorator

To nonintrusively add responsibilities to an object, opt for the benefits
of the Decorator design pattern.

However, there are more design patterns. Many more! Also a lot of
important and useful design patterns. Therefore, you should continue to
learn about design patterns. And there are two ways to do that. First is
getting to know more patterns: learn about their intent and about their
similarities and differences compared to other design patterns. Also, don’t



forget that design patterns are about a dependency structure, not about
implementation details. Second, you should also get a better understanding
about each pattern and experience their advantages and shortcomings. For
that purpose, keep an eye out for design patterns used in the codebases you
work on. I promise you, you will find many of them: any attempt to manage
and reduce dependencies is very likely proof of a design pattern. So yes,
design patterns are everywhere!

GUIDELINE 39: CONTINUE TO LEARN ABOUT DESIGN
PATTERNS

Get to know more design patterns and understand their intent.

Learn more about the advantages and disadvantages of each design
pattern.

Find design patterns in the wild to experience them hands-on.
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Colophon
The animal on the cover of C++ Software Development is is the common
crane (Grus grus, or “crane crane”). Also known as the Eurasian crane, the
common crane is most often found throughout the Paleartic region, which
spans northern Europe, northern Asia, and North Africa, though isolated
groups have been seen as far east as Ireland and as far west as Japan. The
largest nesting populations of common cranes can be found each year in
Russia and Scandinavia.

A large, stately bird, the common crane is of medium size among crane
species, with a body length of 39–51 inches and a wingspan of 71–94
inches, and weighing 10–12 pounds on average. It has a slate-gray body
with a black face, a black-and-white neck, and a red crown. Every two
years or so, this migratory bird molts its feathers entirely, remaining
flightless for six weeks while new feathers grow in. During migration,
flocks of four hundred individuals or more may travel together. These
flocks have been observed flying at altitudes of up to 33,000 feet, the
second highest of any bird species.

Like all cranes, the common crane is omnivorous, eating plant matter as
well as insects, amphibians, rodents, and other small animals. The cranes
typically forage in small groups on land or standing in shallow water,
probing with their bills for food.

Cranes have featured in human art and iconography since ancient times,
appearing in Aesop’s Fables, inspiring traditional dances such as one
performed in Korea since 646 CE, and having association with gods in
ancient South Arabia and Greece, to share just a few examples. Several
styles of martial art, particularly kung fu, have taken inspiration from the
graceful movements of the crane, as popularized in the 1984 hit film The
Karate Kid.

With a global population of around six hundred thousand as of 2014, the
common crane has been classified by the IUCN as being of least concern,
making it one of only four species of crane not considered threatened or



dependent on conservation. Many of the animals on O’Reilly covers are
endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on an antique line
engraving from British Birds. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu
Mono.
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